Download Free Drinking Water And Health Book in PDF and EPUB Free Download. You can read online Drinking Water And Health and write the review.

Drinking water provides an efficient source for the spread of gastrointestinal microbial pathogens capable of causing serious human disease. The massive death toll and burden of disease worldwide caused by unsafe drinking water is a compelling reason to value the privilege of having safe drinking water delivered to individual homes. On rare occasions, that privilege has been undermined in affluent nations by waterborne disease outbreaks traced to the water supply. Using the rich and detailed perspectives offered by the evidence and reports from the Canadian public inquiries into the Walkerton (2000) and North Battleford (2001) outbreaks to develop templates for understanding their key dimensions, over 60 waterborne outbreaks from 15 affluent countries over the past 30 years are explored as individual case studies. Recurring themes and patterns are revealed and the critical human dimensions are highlighted suggesting insights for more effective and more individualized preventive strategies, personnel training, management, and regulatory control. Safe Drinking Water aims to raise understanding and awareness of those factors that have most commonly contributed to or caused drinking-water-transmitted disease outbreaks - essentially a case-history analysis within the multi-barrier framework. It contains detailed analysis of the failures underlying drinking-water-transmitted disease epidemics that have been documented in the open literature, by public inquiry, in investigation reports, in surveillance databases and other reliable information sources. The book adopts a theme of 'converting hindsight into foresight', to inform drinking-water and health professionals including operators, managers, engineers, chemists and microbiologists, regulators, as well as undergraduates and graduates at specialty level. Key Features: Contains details and perspectives of major outbreaks not widely known or understood beyond those directly involved in the investigations. Technical and scientific background associated with case studies is offered in an accessible summary form. Does not require specialist training or experience to comprehend the details of the numerous outbreaks reviewed. By providing a broad-spectrum review using a consistent approach, several key recurring themes are revealed that offer insights for developing localized, tailor-made prevention strategies.
The quality of drinking water is paramount for public health. Despite important improvements in the last decades, access to safe drinking water is not universal. The World Health Organization estimates that almost 10% of the population in the world do not have access to improved drinking water sources. Among other diseases, waterborne infections cause diarrhea, which kills nearly one million people every year, mostly children under 5 years of age. On the other hand, chemical pollution is a concern in high-income countries and an increasing problem in low- and middle-income countries. Exposure to chemicals in drinking water may lead to a range of chronic non-communicable diseases (e.g., cancer, cardiovascular disease), adverse reproductive outcomes, and effects on children’s health (e.g., neurodevelopment), among other health effects. Although drinking water quality is regulated and monitored in many countries, increasing knowledge leads to the need for reviewing standards and guidelines on a nearly permanent basis, both for regulated and newly identified contaminants. Drinking water standards are mostly based on animal toxicity data, and more robust epidemiologic studies with accurate exposure assessment are needed. The current risk assessment paradigm dealing mostly with one-by-one chemicals dismisses the potential synergisms or interactions from exposures to mixtures of contaminants, particularly at the low-exposure range. Thus, evidence is needed on exposure and health effects of mixtures of contaminants in drinking water. Finally, water stress and water quality problems are expected to increase in the coming years due to climate change and increasing water demand by population growth, and new evidence is needed to design appropriate adaptation policies. This Special Issue of International Journal of Environmental Research and Public Health (IJERPH) focuses on the current state of knowledge on the links between drinking water quality and human health.
Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate The Dietary Reference Intakes (DRIs) are quantitative estimates of nutrient intakes to be used for planning and assessing diets for healthy people. This new report, the sixth in a series of reports presenting dietary reference values for the intakes of nutrients by Americans and Canadians, establishes nutrient recommendations on water, potassium, and salt for health maintenance and the reduction of chronic disease risk. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate discusses in detail the role of water, potassium, salt, chloride, and sulfate in human physiology and health. The major findings in this book include the establishment of Adequate Intakes for total water (drinking water, beverages, and food), potassium, sodium, and chloride and the establishment of Tolerable Upper Intake levels for sodium and chloride. The book makes research recommendations for information needed to advance the understanding of human requirements for water and electrolytes, as well as adverse effects associated with the intake of excessive amounts of water, sodium, chloride, potassium, and sulfate. This book will be an invaluable reference for nutritionists, nutrition researchers, and food manufacturers.
The safety of the nation's drinking water must be maintained to ensure the health of the public. The U.S. Environmental Protection Agency (EPA) is responsible for regulating the levels of substances in the drinking water supply. Copper can leach into drinking water from the pipes in the distribution system, and the allowable levels are regulated by the EPA. The regulation of copper, however, is complicated by the fact that it is both necessary to the normal functioning of the body and toxic to the body at too high a level. The National Research Council was requested to form a committee to review the scientific validity of the EPA's maximum contaminant level goal for copper in drinking water. Copper in Drinking Water outlines the findings of the committee's review. The book provides a review of the toxicity of copper as well as a discussion of the essential nature of this metal. The risks posed by both short-term and long-term exposure to copper are characterized, and the implications for public health are discussed. This book is a valuable reference for individuals involved in the regulation of water supplies and individuals interested in issues surrounding this metal.
This volume describes the methods used in the surveillance of drinking water quality in the light of the special problems of small-community supplies, particularly in developing countries, and outlines the strategies necessary to ensure that surveillance is effective.
A range of natural earth materials, like arsenic or fluoride, have long been linked to significant human health effects. Improved understanding of the pervasive and complex interactions between earth materials and human health will require creative collaborations between earth scientists and public health professionals. At the request of the National Science Foundation, U.S. Geological Survey, and National Aeronautics and Space Administration, this National Research Council book assesses the current state of knowledge at the interface between the earth sciences and public health disciplines. The book identifies high-priority areas for collaborative research, including understanding the transport and bioavailability of potentially hazardous earth materials, using risk-based scenarios to mitigate the public health effects of natural hazards under current and future climate regimes, and understanding the health risks that result from disturbance of earth systems. Geospatial information - geological maps for earth scientists and epidemiological data for public health professionals - is identified as one of the essential integrative tools that is fundamental to the activities of both communities. The book also calls for increased data sharing between agencies to promote interdisciplinary research without compromising privacy.
An in-depth look at the changing approaches that environmentalists, governments, and the open market have taken to water through the lens of world history. When we turn on the tap or twist open a tall plastic bottle, we probably don’t give a second thought about where our drinking water comes from. But how it gets from the ground to the glass is far more convoluted than we might think. In this revised edition of Drinking Water, Duke University professor and environmental policy expert James Salzman shows how drinking water highlights the most pressing issues of our time. He adds eye-opening, contemporary examples about our relationship to and consumption of water, and a new chapter about the atrocities that occurred in Flint, Michigan. Provocative, insightful, and engaging, Drinking Water shows just how complex a simple glass of water can be. “A surprising, delightful, fact-filled book.” —Jared Diamond, Pulitzer Prize–winning author of Guns, Germs, and Steel “Instead of buying your next twelve-pack of bottled water, buy this fascinating account of all the people who spent their lives making sure you’d have clean, safe drinking water every time you turned on the tap.” —Bill McKibben, author of Earth: Making a Life on a Tough New Planet “Drinking Water effortlessly guides us through a fascinating world we never consider. Even for people who think they know water, there is a surprise on almost every page.” —Charles Fishman, bestselling author of The Big Thirst and The Wal-Mart Effect “Salzman puts a needed spotlight on an often overlooked but critical social, economic, and political resource.” —Publishers Weekly
Small communities violate federal requirements for safe drinking water as much as three times more often than cities. Yet these communities often cannot afford to improve their water service. Safe Water From Every Tap reviews the risks of violating drinking water standards and discusses options for improving water service in small communities. Included are detailed reviews of a wide range of technologies appropriate for treating drinking water in small communities. The book also presents a variety of institutional options for improving the management efficiency and financial stability of water systems.
Most people associate fluoride with the practice of intentionally adding fluoride to public drinking water supplies for the prevention of tooth decay. However, fluoride can also enter public water systems from natural sources, including runoff from the weathering of fluoride-containing rocks and soils and leaching from soil into groundwater. Fluoride pollution from various industrial emissions can also contaminate water supplies. In a few areas of the United States fluoride concentrations in water are much higher than normal, mostly from natural sources. Fluoride is one of the drinking water contaminants regulated by the U.S. Environmental Protection Agency (EPA) because it can occur at these toxic levels. In 1986, the EPA established a maximum allowable concentration for fluoride in drinking water of 4 milligrams per liter, a guideline designed to prevent the public from being exposed to harmful levels of fluoride. Fluoride in Drinking Water reviews research on various health effects from exposure to fluoride, including studies conducted in the last 10 years.
In today's chemically dependent society, environmental studies demonstrate that drinking water in developed countries contains numerous industrial chemicals, pesticides, pharmaceuticals and chemicals from water treatment processes. This poses a real threat. As a result of the ever-expanding list of chemical and biochemical products industry, current drinking water standards that serve to preserve our drinking water quality are grossly out of date. Environmental Science of Drinking Water demonstrates why we need to make a fundamental change in our approach toward protecting our drinking water. Factual and circumstantial evidence showing the failure of current drinking water standards to adequately protect human health is presented along with analysis of the extent of pollution in our water resources and drinking water. The authors also present detail of the currently available state-of-the-art technologies which, if fully employed, can move us toward a healthier future.* Addresses the international problems of outdated standards and the overwhelming onslaught of new contaminants. * Includes new monitoring data on non-regulated chemicals in water sources and drinking water.* Includes a summary of different bottled waters as well as consumer water purification technologies.