Download Free Double Beta Decay And Related Topics Proceedings Of The International Workshop Held At European Centre For Theoretical Studies Ect Book in PDF and EPUB Free Download. You can read online Double Beta Decay And Related Topics Proceedings Of The International Workshop Held At European Centre For Theoretical Studies Ect and write the review.

The proceedings contain the lectures and contributions given at the workshop on double-beta decay and related topics, which was held at the ETC∗ (European Centre for Theoretical Studies), Trento, Italy, between April 24 and May 5, 1995.Double-beta decay is of prominent actuality nowadays. With the largely increased actuality of neutrino physics by recent observations and discussions of solar and atmospheric neutrino deficits, dark matter physics and neutrino oscillations and recent corresponding development in Grand Unified Theories, double-beta decay has attained a key position within these problems. The lectures of this Workshop treat the theoretical and experimental status, potential and perspectives of double-beta decay research and the intimate interrelations with the above mentioned and other topics from the view of particle, nuclear and astrophysics.
Nuclear double beta decay is one of the most promising tools for probing beyond-the-standard-model physics on beyond-accelerator energy scales. It is already now probing the TeV scale, on which new physics should manifest itself according to theoretical expectations. Only in the early 1980s was it known that double beta decay yields information on the Majorana mass of the exchanged neutrino. At present, the sharpest bound for the electron neutrino mass arises from this process. It is only in the last 10 years that the much more far-reaching potential of double beta decay has been discovered. Today, the potential of double beta decay includes a broad range of topics that are equally relevant to particle physics and astrophysics, such as masses of heavy neutrinos, of sneutrinos, as SUSY models, compositeness, leptoquarks, left-right symmetric models, and tests of Lorentz symmetry and equivalence principle in the neutrino sector. Double beta decay has become indispensable nowadays for solving the problem of the neutrino mass spectrum and the structure of the neutrino mass matrix OCo together with present and future solar and atmospheric neutrino oscillation experiments. Some future double beta experiments (like GENIUS) will be capable to be simultaneously neutrino observatories for double beta decay and low-energy solar neutrinos, and observatories for cold dark matter of ultimate sensitivity. This invaluable book outlines the development of double beta research from its beginnings until its most recent achievements, and also presents the outlook for its highly exciting future. Contents: Double Beta Decay OCo Historical Retrospective and Perspectives; Original Articles: From the Early Days until the Gauge Theory Era; The Nuclear Physics Side OCo Nuclear Matrix Elements; The Nuclear Physics Side OCo Nuclear Matrix Elements; Effective Neutrino Masses from Double Beta Decay, Neutrino Mass Models and Cosmological Parameters OCo Present Status and Prospects; Other Beyond Standard Model Physics: From SUSY and Leptoquarks to Compositeness and Quantum Foam; The Experimental Race: From the Late Eighties to the Future; The Future of Double Beta Decay; Appendices: Ten Years of HeidelbergOCoMoscow Experiment; The Potential Future OCo GENIUS. Readership: Particle physicists, nuclear physicists and astrophysicists."
Nuclear double beta decay is one of the most promising tools for probing beyond-the-standard-model physics on beyond-accelerator energy scales. It is already now probing the TeV scale, on which new physics should manifest itself according to theoretical expectations. Only in the early 1980s was it known that double beta decay yields information on the Majorana mass of the exchanged neutrino. At present, the sharpest bound for the electron neutrino mass arises from this process. It is only in the last 10 years that the much more far-reaching potential of double beta decay has been discovered. Today, the potential of double beta decay includes a broad range of topics that are equally relevant to particle physics and astrophysics, such as masses of heavy neutrinos, of sneutrinos, as SUSY models, compositeness, leptoquarks, left-right symmetric models, and tests of Lorentz symmetry and equivalence principle in the neutrino sector. Double beta decay has become indispensable nowadays for solving the problem of the neutrino mass spectrum and the structure of the neutrino mass matrix — together with present and future solar and atmospheric neutrino oscillation experiments. Some future double beta experiments (like GENIUS) will be capable to be simultaneously neutrino observatories for double beta decay and low-energy solar neutrinos, and observatories for cold dark matter of ultimate sensitivity.This invaluable book outlines the development of double beta research from its beginnings until its most recent achievements, and also presents the outlook for its highly exciting future.
Addressing the need for an up-to-date reference on silicon devices and heterostructures, Beyond the Desert 99 reviews the technology used to grow and characterize Goup IV alloy films. It covers the theory, device design, and simulation of heterojunction transistors, emphasizing their relevance in developing the technologies involving strained layers; device design and simulation of conventional silicon bipolar transistors and SiGe HBTs at room and low temperatures; and device design and simulation for MOSFETs, including SiGe and strained-Si channel MOSFETs. The book concludes with simulations and examples of different applications. It provides a unified reference for scientists and engineers investigating the use of SiGe and strained silicon in a new generation of high-speed circuit applications.
This book contains the Proceedings of the First International Conference 'Beyond the Desert' - on Particle Physics beyond the Standard Model held in June 1997. The conference brought together leading researchers from particle physics and astrophysics to present recent developments and future perspectives, both experimental and theoretical, in this topical field. The complementary approaches of accelerator and non-accelerator research were given equal emphasis. The invited review papers provide a good overview of the field and the contributed papers give the latest results and point the way forward with possible future experiments.