Download Free Dose Benefit And Risk In Medical Imaging Book in PDF and EPUB Free Download. You can read online Dose Benefit And Risk In Medical Imaging and write the review.

This timely overview of dose, benefit, and risk in medical imaging explains to readers how to apply this information for informed decision-making that improves patient outcomes. The chapters cover patient and physician perspectives, referral guidelines, appropriateness criteria, and quantifying medical imaging benefits. The authors have included essential discussion about radiologic physics in medical imaging, fundamentals of dose and image quality, risk assessment, and techniques for optimization and dose reduction. The book highlights practical implementation aspects with useful case studies and checklists for treatment planning. Clinicians, students, residents, and professionals in medical physics, biomedical engineering, radiology, oncology, and allied disciplines will find this book an essential resource with the following key features: Discusses risk, benefit, dose optimization, safety, regulation, radiological protection, and shared & informed decision-making. Covers regulatory oversight by government agencies, manufacturers, and societies. Highlights best practices for improving patient safety and outcomes. Gives guidelines on doses associated with specific procedures.
Does radiation medicine need more regulation or simply better-coordinated regulation? This book addresses this and other questions of critical importance to public health and safety. The issues involved are high on the nation's agenda: the impact of radiation on public safety, the balance between federal and state authority, and the cost-benefit ratio of regulation. Although incidents of misadministration are rare, a case in Pennsylvania resulting in the death of a patient and the inadvertent exposure of others to a high dose of radiation drew attention to issues concerning the regulation of ionizing radiation in medicine and the need to examine current regulatory practices. Written at the request from the Nuclear Regulatory Commission (NRC), Radiation in Medicine reviews the regulation of ionizing radiation in medicine, focusing on the NRC's Medical Use Program, which governs the use of reactor-generated byproduct materials. The committee recommends immediate action on enforcement and provides longer term proposals for reform of the regulatory system. The volume covers: Sources of radiation and their use in medicine. Levels of risk to patients, workers, and the public. Current roles of the Nuclear Regulatory Commission, other federal agencies, and states. Criticisms from the regulated community. The committee explores alternative regulatory structures for radiation medicine and explains the rationale for the option it recommends in this volume. Based on extensive research, input from the regulated community, and the collaborative efforts of experts from a range of disciplines, Radiation in Medicine will be an important resource for federal and state policymakers and regulators, health professionals involved in radiation treatment, developers and producers of radiation equipment, insurance providers, and concerned laypersons.
This booklet sets out referral guidelines that can be used by health professionals qualified to refer patients for imaging. It has evolved from the booklet 'Making the best use of a department of clinical radiology: guidelines for doctors' published by the Royal College of Radiologists in 1998 and can be adopted as a model for Member States. The EU Council Directive 1997/43/EURATOM declared that Member States shall promote the establishment and use of diagnostic reference levels for radiological examinations and guidance thereof. These referral guidelines can be used for that purpose.
This book is the seventh in a series of titles from the National Research Council that addresses the effects of exposure to low dose LET (Linear Energy Transfer) ionizing radiation and human health. Updating information previously presented in the 1990 publication, Health Effects of Exposure to Low Levels of Ionizing Radiation: BEIR V, this book draws upon new data in both epidemiologic and experimental research. Ionizing radiation arises from both natural and man-made sources and at very high doses can produce damaging effects in human tissue that can be evident within days after exposure. However, it is the low-dose exposures that are the focus of this book. So-called “late” effects, such as cancer, are produced many years after the initial exposure. This book is among the first of its kind to include detailed risk estimates for cancer incidence in addition to cancer mortality. BEIR VII offers a full review of the available biological, biophysical, and epidemiological literature since the last BEIR report on the subject and develops the most up-to-date and comprehensive risk estimates for cancer and other health effects from exposure to low-level ionizing radiation.
Implementing safety practices in healthcare saves lives and improves the quality of care: it is therefore vital to apply good clinical practices, such as the WHO surgical checklist, to adopt the most appropriate measures for the prevention of assistance-related risks, and to identify the potential ones using tools such as reporting & learning systems. The culture of safety in the care environment and of human factors influencing it should be developed from the beginning of medical studies and in the first years of professional practice, in order to have the maximum impact on clinicians' and nurses' behavior. Medical errors tend to vary with the level of proficiency and experience, and this must be taken into account in adverse events prevention. Human factors assume a decisive importance in resilient organizations, and an understanding of risk control and containment is fundamental for all medical and surgical specialties. This open access book offers recommendations and examples of how to improve patient safety by changing practices, introducing organizational and technological innovations, and creating effective, patient-centered, timely, efficient, and equitable care systems, in order to spread the quality and patient safety culture among the new generation of healthcare professionals, and is intended for residents and young professionals in different clinical specialties.
Zero in on a key aspect of radiology with Quality and Safety in Medical Imaging: The Essentials! Ideal as an efficient learning tool for residents as well as a quick refresher for experienced radiologists, this practical reference covers every essential feature of this important field, putting indispensable information at your fingertips in a compact, high-yield format. You’ll be brought up to date on radiation dose and safety, patient satisfaction, monitoring and reporting of complications, quality and safety in breast imaging, evidence-based radiology, quality dashboards, quality and safety in nuclear medicine, and much more.
Understanding risk -- Putting risk in perspective -- Risk charts : a way to get perspective -- Judging the benefit of a health intervention -- Not all benefits are equal : understand the outcome -- Consider the downsides -- Do the benefits outweight the downsides? -- Beware of exaggerated importance -- Beware of exaggerated certainty -- Who's behind the numbers?
"The new edition of this monograph features renowned experts who offer the most current information and reliable guidance on all aspects of the effects of radiation exposure on humans. They provide the answers you need to effectively treat your patients who have been exposed to accidental, occupational, or medical radiation."--BOOK JACKET.
Radiology Fundamentals is a concise introduction to the dynamic field of radiology for medical students, non-radiology house staff, physician assistants, nurse practitioners, radiology assistants, and other allied health professionals. The goal of the book is to provide readers with general examples and brief discussions of basic radiographic principles and to serve as a curriculum guide, supplementing a radiology education and providing a solid foundation for further learning. Introductory chapters provide readers with the fundamental scientific concepts underlying the medical use of imaging modalities and technology, including ultrasound, computed tomography, magnetic resonance imaging, and nuclear medicine. The main scope of the book is to present concise chapters organized by anatomic region and radiology sub-specialty that highlight the radiologist’s role in diagnosing and treating common diseases, disorders, and conditions. Highly illustrated with images and diagrams, each chapter in Radiology Fundamentals begins with learning objectives to aid readers in recognizing important points and connecting the basic radiology concepts that run throughout the text. It is the editors’ hope that this valuable, up-to-date resource will foster and further stimulate self-directed radiology learning—the process at the heart of medical education.