Download Free Domination Games Played On Graphs Book in PDF and EPUB Free Download. You can read online Domination Games Played On Graphs and write the review.

This concise monograph present the complete history of the domination game and its variants up to the most recent developments and will stimulate research on closely related topics, establishing a key reference for future developments. The crux of the discussion surrounds new methods and ideas that were developed within the theory, led by the imagination strategy, the Continuation Principle, and the discharging method of Bujtás, to prove results about domination game invariants. A toolbox of proof techniques is provided for the reader to obtain results on the domination game and its variants. Powerful proof methods such as the imagination strategy are presented. The Continuation Principle is developed, which provides a much-used monotonicity property of the game domination number. In addition, the reader is exposed to the discharging method of Bujtás. The power of this method was shown by improving the known upper bound, in terms of a graph's order, on the (ordinary) domination number of graphs with minimum degree between 5 and 50. The book is intended primarily for students in graph theory as well as established graph theorists and it can be enjoyed by anyone with a modicum of mathematical maturity. The authors include exact results for several families of graphs, present what is known about the domination game played on subgraphs and trees, and provide the reader with the computational complexity aspects of domination games. Versions of the games which involve only the “slow” player yield the Grundy domination numbers, which connect the topic of the book with some concepts from linear algebra such as zero-forcing sets and minimum rank. More than a dozen other related games on graphs and hypergraphs are presented in the book. In all these games there are problems waiting to be solved, so the area is rich for further research. The domination game belongs to the growing family of competitive optimization graph games. The game is played by two competitors who take turns adding a vertex to a set of chosen vertices. They collaboratively produce a special structure in the underlying host graph, namely a dominating set. The two players have complementary goals: one seeks to minimize the size of the chosen set while the other player tries to make it as large as possible. The game is not one that is either won or lost. Instead, if both players employ an optimal strategy that is consistent with their goals, the cardinality of the chosen set is a graphical invariant, called the game domination number of the graph. To demonstrate that this is indeed a graphical invariant, the game tree of a domination game played on a graph is presented for the first time in the literature.
This volume comprises 17 contributions that present advanced topics in graph domination, featuring open problems, modern techniques, and recent results. The book is divided into 3 parts. The first part focuses on several domination-related concepts: broadcast domination, alliances, domatic numbers, dominator colorings, irredundance in graphs, private neighbor concepts, game domination, varieties of Roman domination and spectral graph theory. The second part covers domination in hypergraphs, chessboards, and digraphs and tournaments. The third part focuses on the development of algorithms and complexity of signed, minus and majority domination, power domination, and alliances in graphs. The third part also includes a chapter on self-stabilizing algorithms. Of extra benefit to the reader, the first chapter includes a glossary of commonly used terms. The book is intended to provide a reference for established researchers in the fields of domination and graph theory and graduate students who wish to gain knowledge of the topics covered as well as an overview of the major accomplishments and proof techniques used in the field.
""Presents the latest in graph domination by leading researchers from around the world-furnishing known results, open research problems, and proof techniques. Maintains standardized terminology and notation throughout for greater accessibility. Covers recent developments in domination in graphs and digraphs, dominating functions, combinatorial problems on chessboards, and more.
Total Domination in Graphs gives a clear understanding of this topic to any interested reader who has a modest background in graph theory. This book provides and explores the fundamentals of total domination in graphs. Some of the topics featured include the interplay between total domination in graphs and transversals in hypergraphs, and the association with total domination in graphs and diameter-2-critical graphs. Several proofs are included in this text which enables readers to acquaint themselves with a toolbox of proof techniques and ideas with which to attack open problems in the field. This work is an excellent resource for students interested in beginning their research in this field. Additionally, established researchers will find the book valuable to have as it contains the latest developments and open problems.
This second volume in a two-volume series provides an extensive collection of conjectures and open problems in graph theory. It is designed for both graduate students and established researchers in discrete mathematics who are searching for research ideas and references. Each chapter provides more than a simple collection of results on a particular topic; it captures the reader’s interest with techniques that worked and failed in attempting to solve particular conjectures. The history and origins of specific conjectures and the methods of researching them are also included throughout this volume. Students and researchers can discover how the conjectures have evolved and the various approaches that have been used in an attempt to solve them. An annotated glossary of nearly 300 graph theory parameters, 70 conjectures, and over 600 references is also included in this volume. This glossary provides an understanding of parameters beyond their definitions and enables readers to discover new ideas and new definitions in graph theory. The editors were inspired to create this series of volumes by the popular and well-attended special sessions entitled “My Favorite Graph Theory Conjectures,” which they organized at past AMS meetings. These sessions were held at the winter AMS/MAA Joint Meeting in Boston, January 2012, the SIAM Conference on Discrete Mathematics in Halifax in June 2012, as well as the winter AMS/MAA Joint Meeting in Baltimore in January 2014, at which many of the best-known graph theorists spoke. In an effort to aid in the creation and dissemination of conjectures and open problems, which is crucial to the growth and development of this field, the editors invited these speakers, as well as other experts in graph theory, to contribute to this series.
The 35th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2009) took place at Montpellier (France), June 24–26 2009. About 80 computer scientists from all over the world (Australia, Belgium, Canada, China, Czech Republic, France, Germany, Greece, Israel, Japan, Korea, The Netherlands, Norway, Spain, UK, USA) attended the conference. Since1975,ithastakenplace20timesinGermany,fourtimesinTheNeth- lands, twice in Austria, as well as once in Italy, Slovakia, Switzerland, the Czech Republic, France, Norway, and the UK. The conference aims at uniting theory and practice by demonstrating how graph-theoretic concepts can be applied to various areas in computer science, or by extracting new problems from appli- tions. The goal is to present recent research results and to identify and explore directions of future research. The conference is well-balanced with respect to established researchers and young scientists. There were 69 submissions. Each submission was reviewed by at least three, and on average four, Program Committee members. The Committee decided to accept 28 papers. Due to the competition and the limited schedule, some good papers could not be accepted. Theprogramalsoincludedexcellentinvitedtalks:onegivenbyDanielKràlon “AlgorithmsforClassesofGraphswithBoundedExpansion,” the otherbyDavid Eppsteinon“Graph-TheoreticSolutionstoComputationalGeometryProblems.” The proceedings contains two survey papers on these topics.
Graph theory is an important area of applied mathematics with a broad spectrum of applications in many fields. This book results from aSpecialIssue in the journal Mathematics entitled “Graph-Theoretic Problems and Their New Applications”. It contains 20 articles covering a broad spectrum of graph-theoretic works that were selected from 151 submitted papers after a thorough refereeing process. Among others, it includes a deep survey on mixed graphs and their use for solutions ti scheduling problems. Other subjects include topological indices, domination numbers of graphs, domination games, contraction mappings, and neutrosophic graphs. Several applications of graph theory are discussed, e.g., the use of graph theory in the context of molecular processes.
From specialists in the field, you will learn about interesting connections and recent developments in the field of graph theory by looking in particular at Cartesian products-arguably the most important of the four standard graph products. Many new results in this area appear for the first time in print in this book. Written in an accessible way,
This book constitutes the thoroughly refereed post workshop proceedings of the 8th International Workshop on Approximation and Online Algorithms, WAOA 2010, held in Liverpool, UK, in September 2010 as part of the ALGO 2010 conference event. The 23 revised full papers presented were carefully reviewed and selected from 58 submissions. The workshop covered areas such as algorithmic game theory, approximation classes, coloring and partitioning, competitive analysis, computational finance, cuts and connectivity, geometric problems, inapproximability results, echanism design, network design, packing and covering, paradigms for design and analysis of approximation and online algorithms, parameterized complexity, randomization techniques, real-world applications, and scheduling problems.
This volume constitutes the proceedings of the 14th International Conference on Combinatorial Optimization and Applications, COCOA 2020, held in Dallas, TX, USA, in December 2020. The 55 full papers presented in this volume were carefully reviewed and selected from 104 submissions. The papers are grouped into the following topics: Approximation Algorithms; Scheduling; Network Optimization; Complexity and Logic; Search, Facility and Graphs; Geometric Problem; Sensors, Vehicles and Graphs; and Graph Problems. Due to the Corona pandemic this event was held virtually.