Download Free Document Clustering In Large German Corpora Using Natural Language Processing Book in PDF and EPUB Free Download. You can read online Document Clustering In Large German Corpora Using Natural Language Processing and write the review.

The Covid-19 pandemic affected the daily lives of all of us on many levels. Epidemiology suddenly became a personal matter and general interest in many aspects of medical data science became much more widespread. And physical distance became the new normal. This book presents the full paper part of the proceedings of GMDS 2023, the 68th annual meeting of the German Association for Medical Informatics, Biometry and Epidemiology, held from 17 to 21 September 2023 in Heilbronn, Germany. The theme of the conference was, Science. Close to People, a particularly appropriate theme for the first of these annual conferences to be held face-to-face since 2019. A total of 227 scientific contributions were submitted to GMDS 2023, including 41 full papers for this volume in Studies in HTI. Of these, 30 papers are included here, following a rigorous two-stage review process, which represents an acceptance rate of 73%. The 30 papers in this book are grouped under 8 headings: FAIRification; research software engineering for research infrastructure & study data management; human factors; data quality; clinical decision support & artificial intelligence; evaluation of healthcare IT; biosignals; and interoperability. Providing a broad overview of current developments in the disciplines of medical informatics, biometry and epidemiology, the book will be of interest to all those working in these fields.
This book provides a comprehensive overview of methods to build comparable corpora and of their applications, including machine translation, cross-lingual transfer, and various kinds of multilingual natural language processing. The authors begin with a brief history on the topic followed by a comparison to parallel resources and an explanation of why comparable corpora have become more widely used. In particular, they provide the basis for the multilingual capabilities of pre-trained models, such as BERT or GPT. The book then focuses on building comparable corpora, aligning their sentences to create a database of suitable translations, and using these sentence translations to produce dictionaries and term banks. Then, it is explained how comparable corpora can be used to build machine translation engines and to develop a wide variety of multilingual applications.
This open access volume constitutes the refereed proceedings of the 27th biennial conference of the German Society for Computational Linguistics and Language Technology, GSCL 2017, held in Berlin, Germany, in September 2017, which focused on language technologies for the digital age. The 16 full papers and 10 short papers included in the proceedings were carefully selected from 36 submissions. Topics covered include text processing of the German language, online media and online content, semantics and reasoning, sentiment analysis, and semantic web description languages.
This book constitutes the thoroughly refereed post-conference proceedings of the 14th International Conference on Applications of Natural Language to Information Systems, NLDB 2009, held in Saarbrücken, Germany, in June 2009.
This volume collects revised versions of papers presented at the 29th Annual Conference of the Gesellschaft für Klassifikation, the German Classification Society, held at the Otto-von-Guericke-University of Magdeburg, Germany, in March 2005. In addition to traditional subjects like Classification, Clustering, and Data Analysis, converage extends to a wide range of topics relating to Computer Science: Text Mining, Web Mining, Fuzzy Data Analysis, IT Security, Adaptivity and Personalization, and Visualization.
With emerging trends such as the Internet of Things, sensors and actuators are now deployed and connected everywhere to gather information and solve problems, and such systems are expected to be trustworthy, dependable and reliable under all circumstances. But developing intelligent environments which have a degree of common sense is proving to be exceedingly complicated, and we are probably still more than a decade away from sophisticated networked systems which exhibit human-like thought and intelligent behavior. This book presents the proceedings of four workshops and symposia: the 4th International Workshop on Smart Offices and Other Workplaces (SOOW’15); the 4th International Workshop on the Reliability of Intelligent Environments (WoRIE’15); the Symposium on Future Intelligent Educational Environments and Learning 2015 (SOFIEEe’15); and the 1st immersive Learning Research Network Conference (iLRN’15). These formed part of the 11th International Conference on Intelligent Environments, held in Prague, Czech Republic, in July 2015, which focused on the development of advanced, reliable intelligent environments, as well as newly emerging and rapidly evolving topics. This overview of and insight into the latest developments of active researchers in the field will be of interest to all those who follow developments in the world of intelligent environments.
Natural Language Processing and Text Mining not only discusses applications of Natural Language Processing techniques to certain Text Mining tasks, but also the converse, the use of Text Mining to assist NLP. It assembles a diverse views from internationally recognized researchers and emphasizes caveats in the attempt to apply Natural Language Processing to text mining. This state-of-the-art survey is a must-have for advanced students, professionals, and researchers.
More and more historical texts are becoming available in digital form. Digitization of paper documents is motivated by the aim of preserving cultural heritage and making it more accessible, both to laypeople and scholars. As digital images cannot be searched for text, digitization projects increasingly strive to create digital text, which can be searched and otherwise automatically processed, in addition to facsimiles. Indeed, the emerging field of digital humanities heavily relies on the availability of digital text for its studies. Together with the increasing availability of historical texts in digital form, there is a growing interest in applying natural language processing (NLP) methods and tools to historical texts. However, the specific linguistic properties of historical texts -- the lack of standardized orthography, in particular -- pose special challenges for NLP. This book aims to give an introduction to NLP for historical texts and an overview of the state of the art in this field. The book starts with an overview of methods for the acquisition of historical texts (scanning and OCR), discusses text encoding and annotation schemes, and presents examples of corpora of historical texts in a variety of languages. The book then discusses specific methods, such as creating part-of-speech taggers for historical languages or handling spelling variation. A final chapter analyzes the relationship between NLP and the digital humanities. Certain recently emerging textual genres, such as SMS, social media, and chat messages, or newsgroup and forum postings share a number of properties with historical texts, for example, nonstandard orthography and grammar, and profuse use of abbreviations. The methods and techniques required for the effective processing of historical texts are thus also of interest for research in other domains. Table of Contents: Introduction / NLP and Digital Humanities / Spelling in Historical Texts / Acquiring Historical Texts / Text Encoding and Annotation Schemes / Handling Spelling Variation / NLP Tools for Historical Languages / Historical Corpora / Conclusion / Bibliography