Download Free Dna Repair And Human Disease Book in PDF and EPUB Free Download. You can read online Dna Repair And Human Disease and write the review.

The overall aim of this book is to give scientists in academia and industry a comprehensive overview of the field of DNA damage and DNA repair and related human diseases.
At least 5 trillion cell divisions are required for a fertilized egg to develop into an adult human, resulting in the production of more than 20 trillion meters of DNA! And yet, with only two exceptions, the genome is replicated once and only once each time a cell divides. How is this feat accomplished? What happens when errors occur? This book addresses these questions by presenting a thorough analysis of the molecular events that govern DNA replication in eukaryotic cells. The association between genome replication and cell proliferation, disease pathogenesis, and the development of targeted therapeutics is also addressed. At least 160 proteins are involved in replicating the human genome, and at least 40 diseases are caused by aberrant DNA replication, 35 by mutations in genes required for DNA replication or repair, 7 by mutations generated during mitochondrial DNA replication, and more than 40 by DNA viruses. Consequently, a growing number of therapeutic drugs are targeted to DNA replication proteins. This authoritative volume provides a rich source of information for researchers, physicians, and teachers, and will stimulate thinking about the relevance of DNA replication to human disease.
An essential resource for all scientists researching cellular responses to DNA damage. • Introduces important new material reflective of the major changes and developments that have occurred in the field over the last decade. • Discussed the field within a strong historical framework, and all aspects of biological responses to DNA damage are detailed. • Provides information on covering sources and consequences of DNA damage; correcting altered bases in DNA: DNA repair; DNA damage tolerance and mutagenesis; regulatory responses to DNA damage in eukaryotes; and disease states associated with defective biological responses to DNA damage.
DNA Repair Mechanisms is an account of the proceedings at a major international conference on DNA Repair Mechanisms held at Keystone, Colorado on February 1978. The conference discusses through plenary sessions the overall standpoint of DNA repair. The papers presented and other important documents, such as short summaries by the workshop session conveners, comprise this book. The compilation describes the opposing views, those that agree and dispute about certain topic areas. This book, divided into 15 parts, is arranged according to the proceedings in the conference. The plenary sessions are ...
The DNA of all organisms is constantly being damaged by endogenous and exogenous sources. Oxygen metabolism generates reactive species that can damage DNA, proteins and other organic compounds in living cells. Exogenous sources include ionizing and ultraviolet radiations, carcinogenic compounds and environmental toxins among others. The discovery of multiple DNA lesions and DNA repair mechanisms showed the involvement of DNA damage and DNA repair in the pathogenesis of many human diseases, most notably cancer. These books provide a comprehensive overview of the interdisciplinary area of DNA damage and DNA repair, and their relevance to disease pathology. Edited by recognised leaders in the field, this two-volume set is an appealing resource to a variety of readers including chemists, chemical biologists, geneticists, cancer researchers and drug discovery scientists.
Heritable human genome editing - making changes to the genetic material of eggs, sperm, or any cells that lead to their development, including the cells of early embryos, and establishing a pregnancy - raises not only scientific and medical considerations but also a host of ethical, moral, and societal issues. Human embryos whose genomes have been edited should not be used to create a pregnancy until it is established that precise genomic changes can be made reliably and without introducing undesired changes - criteria that have not yet been met, says Heritable Human Genome Editing. From an international commission of the U.S. National Academy of Medicine, U.S. National Academy of Sciences, and the U.K.'s Royal Society, the report considers potential benefits, harms, and uncertainties associated with genome editing technologies and defines a translational pathway from rigorous preclinical research to initial clinical uses, should a country decide to permit such uses. The report specifies stringent preclinical and clinical requirements for establishing safety and efficacy, and for undertaking long-term monitoring of outcomes. Extensive national and international dialogue is needed before any country decides whether to permit clinical use of this technology, according to the report, which identifies essential elements of national and international scientific governance and oversight.
This book is a comprehensive review of the detailed molecular mechanisms of and functional crosstalk among the replication, recombination, and repair of DNA (collectively called the "3Rs") and the related processes, with special consciousness of their biological and clinical consequences. The 3Rs are fundamental molecular mechanisms for organisms to maintain and sometimes intentionally alter genetic information. DNA replication, recombination, and repair, individually, have been important subjects of molecular biology since its emergence, but we have recently become aware that the 3Rs are actually much more intimately related to one another than we used to realize. Furthermore, the 3R research fields have been growing even more interdisciplinary, with better understanding of molecular mechanisms underlying other important processes, such as chromosome structures and functions, cell cycle and checkpoints, transcriptional and epigenetic regulation, and so on. This book comprises 7 parts and 21 chapters: Part 1 (Chapters 1–3), DNA Replication; Part 2 (Chapters 4–6), DNA Recombination; Part 3 (Chapters 7–9), DNA Repair; Part 4 (Chapters 10–13), Genome Instability and Mutagenesis; Part 5 (Chapters 14–15), Chromosome Dynamics and Functions; Part 6 (Chapters 16–18), Cell Cycle and Checkpoints; Part 7 (Chapters 19–21), Interplay with Transcription and Epigenetic Regulation. This volume should attract the great interest of graduate students, postdoctoral fellows, and senior scientists in broad research fields of basic molecular biology, not only the core 3Rs, but also the various related fields (chromosome, cell cycle, transcription, epigenetics, and similar areas). Additionally, researchers in neurological sciences, developmental biology, immunology, evolutionary biology, and many other fields will find this book valuable.