Download Free Dna Engineered Noble Metal Nanoparticles Book in PDF and EPUB Free Download. You can read online Dna Engineered Noble Metal Nanoparticles and write the review.

There is a growing interest in the use of nanoparticles modified with DNAs, viruses, peptides and proteins for the rational design of nanostructured functional materials and their use in biosensor applications. The challenge is to control the organization of biomolecules on nanoparticles while retaining their biological activity as potential chemical and gene therapeutics. These noble metal nanoparticles/biomolecules conjugates have specific properties and therefore they are attractive materials for nanotechnology in biochemistry and medicine. In this book, the author review work performed dealing with the DNA structure and functionalities, interactions between DNA, noble metal nanoparticles, surface active agents, solvents and other additives. Particular attention is given to how the DNA's chain length and the DNA conformation affect the interaction and structure of the nanoconjugates and nanostructures that are formed. Also discussed are the recent advances in the preparation, characterization, and applications of noble metal nanoparticles that are conjugated with DNA aptamers and oligomers. The advantages and disadvantages of functionalized nanoparticles through various detection modes are highlighted, including colorimetry, fluorescence, electrochemistry, SPR, and, mass spectrometry for the detection of small molecules and biomolecules. The functionalized noble metal nanoparticles are selective and sensitive for the analytes, showing their great potential in biosensing. Furthermore, this book reviews recent progress in the area of DNA-noble metal nanoparticles based artificial nanostructures, that is, the preparation, collective properties, and applications of various DNA-based nanostructures are also described.
There is a growing interest in the use of nanoparticles modified with DNAs, viruses, peptides and proteins for the rational design of nanostructured functional materials and their use in biosensor applications. The challenge is to control the organization of biomolecules on nanoparticles while retaining their biological activity as potential chemical and gene therapeutics. These noble metal nanoparticles/biomolecules conjugates have specific properties and therefore they are attractive materials for nanotechnology in biochemistry and medicine. In this book, the author review work performed dealing with the DNA structure and functionalities, interactions between DNA, noble metal nanoparticles, surface active agents, solvents and other additives. Particular attention is given to how the DNA's chain length and the DNA conformation affect the interaction and structure of the nanoconjugates and nanostructures that are formed. Also discussed are the recent advances in the preparation, characterization, and applications of noble metal nanoparticles that are conjugated with DNA aptamers and oligomers. The advantages and disadvantages of functionalized nanoparticles through various detection modes are highlighted, including colorimetry, fluorescence, electrochemistry, SPR, and, mass spectrometry for the detection of small molecules and biomolecules. The functionalized noble metal nanoparticles are selective and sensitive for the analytes, showing their great potential in biosensing. Furthermore, this book reviews recent progress in the area of DNA-noble metal nanoparticles based artificial nanostructures, that is, the preparation, collective properties, and applications of various DNA-based nanostructures are also described.
Anisotropic, noble metal nanoparticles have been synthesized using a template synthesis strategy. In short, metallic salts are reduced in the nanometer scale pores of either an alumina or polycarbonate membrane. The particles can then be released from the template to form suspensions of anisotropic nanoparticles. These nanoparticles have been modified with deoxyribonucleic acid (DNA) oligomers of varying length using several different attachment chemistries. The thermodynamics and kinetics of modifying these particles with DNA has been explored. DNA has also been used to assemble the particles on planar Au surfaces as well as lithographically defined Au pads on Si wafers. In addition to surface assembly, DNA has been used to assemble the nanowires into simple, yet deterministic structures in solution.
Novel nanoscale materials are now an essential part of meeting the current and future needs for clean water, and are at the heart of the development of novel technologies to desalinate water. The unique properties of nanomaterials and their convergence with current treatment technologies present great opportunities to revolutionize water and wastewater treatment. Nanoscale Materials for Water Purification brings together sustainable solutions using novel nanomaterials to alleviate the physical effects of water scarcity. This book covers a wide range of nanomaterials, including noble metal nanoparticles, magnetic nanoparticles, dendrimers, bioactive nanoparticles, polysaccharidebased nanoparticles, nanocatalysts, and redox nanoparticles for water purification. Significant properties and characterization methods of nanomaterials such as surface morphology, mechanical properties, and adsorption capacities are also investigated Explains how the unique properties of a range of nanomaterials makes them important water purification agents Shows how the use of nanotechnology can help create cheaper, more reliable, less energy-intensive, more environmentally friendly water purification techniques Includes case studies to show how nanotechnology has successfully been integrated into water purification system design
During the past years, scientists have achieved significant success in the nanoscience and nanotechnology. Nanotechnology is a field of applied sciences which is focused on design, production, detection, and employing the nano-size materials, pieces, and equipment. Advances in nanotechnology lead to improvement of tools and equipment as well as their application in everyday life. In the chemistry this size involves the range of colloids, micelles, polymer molecules, and structures such as very large molecules or dense accumulation of the molecules. In physics of electrical engineering, the nanoscience is strongly related to quantum behaviour or electrons behaviour in structures with nano sizes. Also, in biology and biochemistry, there are interesting cellular components and molecular structures. This book collects new developments about nanoparticles.
During recent years our enthusiasm for this field has continually increased. This book presents expert contributions describing the fundamental principles for the widespread use of radiative decay engineering in the biological sciences and nanotechnology.
Nanobiosensors: Nanotechnology in the Agri-Food Industry, Volume 8, provides the latest information on the increasing demand for robust, rapid, inexpensive, and safe alternative technologies that monitor, test, and detect harmful or potentially dangerous foods. Due to their high sensitivity and selectivity, nanobiosensors have attracted attention for their use in monitoring not only biological contaminants in food, but also potential chemical and physical hazards. This book offers a broad overview regarding the current progress made in the field of nanosensors, including cutting-edge technological progress and the impact of these devices on the food industry. Special attention is given to the detection of microbial contaminants and harmful metabolotes, such as toxins and hormones, which have a great impact on both humans and animal health and feed. Includes the most up-to-date information on nanoparticles based biosensors and quantum dots for biological detection Provides application methods and techniques for research analysis for bacteriological detection and food testing Presents studies using analytical tools to improve food safety and quality analysis
Metal nanoparticles that have already found numerous applications in science and technology may be obtained in different ways. In the opening study included in Metal Nanoparticles: Properties, Synthesis and Applications, several factors affecting metal nanoparticle morphology in island films are determined. The formation of islet metal films during their deposition in the process of thermal evaporation on a dielectric substrate and their spontaneous changes at room temperature are also described. Following this, the authors present their experimental results on synthesis, modification and destruction of silver nanoparticles in the bulk and surface of silicate glasses. Special attention is paid to the effects of laser and electron-beam irradiation on the above-mentioned processes. The authors go on to review the synthesis of embedded noble metal nanoparticles and their optical properties and potential applications in surface enhanced Raman scattering. The optical properties of NMNPs due to the localized surface plasmon resonance and the enhanced local electromagnetic field which govern their SERS activity will be discussed along with their fundamental mechanisms. The effects of zinc, titanium, copper and oxide thin films with nanostructured surfaces and iron oxide and silver nanoparticles on Enterococcus hirae and Escherichia coli growth and membrane activity are also presented and discussed. The authors suggest that different types of metal nanoparticles could be applied in medicine due to their antimicrobial activity, effeciency in anti-inflammatory effects and potential in anticancer therapy. Next, the development of platinum-metal nanoparticles and their core-shell structures is discussed. The authors analyze in detail the polymeric composite of the metal nanoparticles on the surface of different carbon support materials (e.g. carbon nanotubes, graphene, carbon-nanospheres, mesoporous carbon, and carbon nanofibers), showing the synergetic effects on the active surface area of platinum metal catalysts. In one review, the past decade's data regarding the effects of nanoparticles of noble metals on higher plants are considered, as well as possible nanoparticle phytotoxicity. The review discusses the various effects that gold and silver nanoparticles can have on the state, growth, and productivity of plants. Published evidence, although incomplete and contradictory, indicates that metal nanoparticles can have both positive and negative effects on plants. Lastly, glassy carbon electrodes modified with polyphenazine conducting polymers and metallic nanoparticles were used to study the interaction between H2O2 and ascorbic acid. The antioxidant capacity of ascorbic acid measured from this interaction agreed with that reported using non-electrochemical techniques.
This book describes the fundamental concepts, the latest developments and the outlook of the field of nanozymes (i.e., the catalytic nanomaterials with enzymatic characteristics). As one of today’s most exciting fields, nanozyme research lies at the interface of chemistry, biology, materials science and nanotechnology. Each of the book’s six chapters explores advances in nanozymes. Following an introduction to the rise of nanozymes research in the course of research on natural enzymes and artificial enzymes in Chapter 1, Chapters 2 through 5 discuss different nanomaterials used to mimic various natural enzymes, from carbon-based and metal-based nanomaterials to metal oxide-based nanomaterials and other nanomaterials. In each of these chapters, the nanomaterials’ enzyme mimetic activities, catalytic mechanisms and key applications are covered. In closing, Chapter 6 addresses the current challenges and outlines further directions for nanozymes. Presenting extensive information on nanozymes and supplemented with a wealth of color illustrations and tables, the book offers an ideal guide for readers from disparate areas, including analytical chemistry, materials science, nanoscience and nanotechnology, biomedical and clinical engineering, environmental science and engineering, green chemistry, and novel catalysis.