Download Free Distributed Control Applications Book in PDF and EPUB Free Download. You can read online Distributed Control Applications and write the review.

Distributed Control Applications: Guidelines, Design Patterns, and Application Examples with the IEC 61499 discusses the IEC 61499 reference architecture for distributed and reconfigurable control and its adoption by industry. The book provides design patterns, application guidelines, and rules for designing distributed control applications based on the IEC 61499 reference model. Moreover, examples from various industrial domains and laboratory environments are introduced and explored.
Designing Distributed Control Systems presents 80 patterns for designing distributed machine control system software architecture (forestry machinery, mining drills, elevators, etc.). These patterns originate from state-of-the-art systems from market-leading companies, have been tried and tested, and will address typical challenges in the domain, such as long lifecycle, distribution, real-time and fault tolerance. Each pattern describes a separate design problem that needs to be solved. Solutions are provided, with consequences and trade-offs. Each solution will enable piecemeal growth of the design. Finding a solution is easy, as the patterns are divided into categories based on the problem field the pattern tackles. The design process is guided by different aspects of quality, such as performance and extendibility, which are included in the pattern descriptions. The book also contains an example software architecture designed by leading industry experts using the patterns in the book. The example system introduces the reader to the problem domain and demonstrates how the patterns can be used in a practical system design process. The example architecture shows how useful a toolbox the patterns provide for both novices and experts, guiding the system design process from its beginning to the finest details. Designing distributed machine control systems with patterns ensures high quality in the final product. High-quality systems will improve revenue and guarantee customer satisfaction. As market need changes, the desire to produce a quality machine is not only a primary concern, there is also a need for easy maintenance, to improve efficiency and productivity, as well as the growing importance of environmental values; these all impact machine design. The software of work machines needs to be designed with these new requirements in mind. Designing Distributed Control Systems presents patterns to help tackle these challenges. With proven methodologies from the expert author team, they show readers how to improve the quality and efficiency of distributed control systems.
The book aims to equalize the theoretical involvement with industrial practicality and build a bridge between academia and industry by reducing the mathematical difficulties. It provides an overview of distributed control and distributed optimization theory, followed by specific details on industrial applications to smart grid systems, with a special focus on micro grid systems. Each of the chapters is written and organized with an introductory section tailored to provide the essential background of the theories required. The text includes industrial applications to realistic renewable energy systems problems and illustrates the application of proposed toolsets to control and optimization of smart grid systems.
A reference guide for professionals or text for graduate and postgraduate students, this volume emphasizes practical designs and applications of distributed computer control systems. It demonstrates how to improve plant productivity, enhance product quality, and increase the safety, reliability, and
The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems. This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those who want to gain a deeper insight in the wide range of distributed MPC techniques available.
"This book addresses the development of reconfigurable embedded control systems and describes various problems in this important research area, which include static and dynamic (manual or automatic) reconfigurations, multi-agent architectures, modeling and verification, component-based approaches, architecture description languages, distributed reconfigurable architectures, real-time and low power scheduling, execution models, and the implementation of such systems"--
Digital Computer Applications to Process Control presents the developments in the application of digital computers to the control of technical processes. This book discusses the control principles and includes as well direct feedback and feed forward control as monitoring and optimization of technical processes. Organized into five parts encompassing 77 chapters, this book begins with an overview of the two categories of microprocessor systems. This text then discusses the concept of a sensor controlled robot that adapts to any task, assures product quality, and eliminates machine tending labor. Other chapters consider the ergonomic adaptation of the human operator's working conditions to his abilities. This book discusses as well the self-tuning regulator for liquid level in the acetic acid evaporator and its actual performance in production. The final chapter deals with algebraic method for deadbeat control of multivariable linear time-invariant continuous systems. This book is a valuable resource for electrical and control engineers.
This book nds its origin in the WIDE PhD School on Networked Control Systems, which we organized in July 2009 in Siena, Italy. Having gathered experts on all the aspects of networked control systems, it was a small step to go from the summer school to the book, certainly given the enthusiasm of the lecturers at the school. We felt that a book collecting overviewson the important developmentsand open pr- lems in the eld of networked control systems could stimulate and support future research in this appealing area. Given the tremendouscurrentinterests in distributed control exploiting wired and wireless communication networks, the time seemed to be right for the book that lies now in front of you. The goal of the book is to set out the core techniques and tools that are ava- able for the modeling, analysis and design of networked control systems. Roughly speaking, the book consists of three parts. The rst part presents architectures for distributed control systems and models of wired and wireless communication n- works. In particular, in the rst chapter important technological and architectural aspects on distributed control systems are discussed. The second chapter provides insight in the behavior of communication channels in terms of delays, packet loss and information constraints leading to suitable modeling paradigms for commu- cation networks.
This fascinating new work comes complete with more than 100 illustrations and a detailed practical prototype. It explores the domains encountered when designing a distributed embedded computer control system as an integrated whole. Basic issues about real-time systems and their properties, especially safety, are examined first. Then, system and hardware architectures are dealt with, along with programming issues, embodying desired properties, basic language subsets, object orientation and language support for hardware and software specifications.
EMBEDDED DIGITAL CONTROL WITH MICROCONTROLLERS Explore a concise and practical introduction to implementation methods and the theory of digital control systems on microcontrollers Embedded Digital Control with Microcontrollers delivers expert instruction in digital control system implementation techniques on the widely used ARM Cortex-M microcontroller. The accomplished authors present the included information in three phases. First, they describe how to implement prototype digital control systems via the Python programming language in order to help the reader better understand theoretical digital control concepts. Second, the book offers readers direction on using the C programming language to implement digital control systems on actual microcontrollers. This will allow readers to solve real-life problems involving digital control, robotics, and mechatronics. Finally, readers will learn how to merge the theoretical and practical issues discussed in the book by implementing digital control systems in real-life applications. Throughout the book, the application of digital control systems using the Python programming language ensures the reader can apply the theory contained within. Readers will also benefit from the inclusion of: A thorough introduction to the hardware used in the book, including STM32 Nucleo Development Boards and motor drive expansion boards An exploration of the software used in the book, including Python, MicroPython, and Mbed Practical discussions of digital control basics, including discrete-time signals, discrete-time systems, linear and time-invariant systems, and constant coefficient difference equations An examination of how to represent a continuous-time system in digital form, including analog-to-digital conversion and digital-to-analog conversion Perfect for undergraduate students in electrical engineering, Embedded Digital Control with Microcontrollers will also earn a place in the libraries of professional engineers and hobbyists working on digital control and robotics systems seeking a one-stop reference for digital control systems on microcontrollers.