Download Free Distillation Troubleshooting Book in PDF and EPUB Free Download. You can read online Distillation Troubleshooting and write the review.

THE FIRST BOOK OF ITS KIND ON DISTILLATION TECHNOLOGY The last half-century of research on distillation has tremendously improved our understanding and design of industrial distillation equipment and systems. High-speed computers have taken over the design, control, and operation of towers. Invention and innovation in tower internals have greatly enhanced tower capacity and efficiency. With all these advances, one would expect the failure rate in distillation towers to be on the decline. In fact, the opposite is the case: the tower failure rate is on the rise and accelerating. Distillation Troubleshooting collects invaluable hands-on experiences acquired in dealing with distillation and absorption malfunctions, making them readily accessible for those engaged in solving today's problems and avoiding tomorrow's. The first book of its kind on the distillation industry, the practical lessons it offers are a must for those seeking the elusive path to trouble-free distillation. Distillation Troubleshooting covers over 1,200 case histories of problems, diagnoses, solutions, and key lessons. Coverage includes: * Successful and unsuccessful struggles with plugging, fouling, and coking * Histories and prevention of tray, packing, and internals damage * Lessons taught by incidents and accidents during shutdowns, commissioning, and abnormal operation * Troubleshooting distillation simulations to match the real world * Making packing liquid distributors work * Plant bottlenecks from intermediate draws, chimney trays, and feed points * Histories of and key lessons from explosions and fires in distillation towers * Prevention of flaws that impair reboiler and condenser performance * Destabilization of tower control systems and how to correct it * Discoveries from shutdown inspections * Suppression of foam and accumulation incidents A unique resource for improving the foremost industrial separation process, Distillation Troubleshooting transforms decades of hands-on experiences into a handy reference for professionals and students involved in the operation, design, study, improvement, and management of large-scale distillation.
THE FIRST BOOK OF ITS KIND ON DISTILLATION TECHNOLOGY The last half-century of research on distillation has tremendously improved our understanding and design of industrial distillation equipment and systems. High-speed computers have taken over the design, control, and operation of towers. Invention and innovation in tower internals have greatly enhanced tower capacity and efficiency. With all these advances, one would expect the failure rate in distillation towers to be on the decline. In fact, the opposite is the case: the tower failure rate is on the rise and accelerating. Distillation Troubleshooting collects invaluable hands-on experiences acquired in dealing with distillation and absorption malfunctions, making them readily accessible for those engaged in solving today's problems and avoiding tomorrow's. The first book of its kind on the distillation industry, the practical lessons it offers are a must for those seeking the elusive path to trouble-free distillation. Distillation Troubleshooting covers over 1,200 case histories of problems, diagnoses, solutions, and key lessons. Coverage includes: Successful and unsuccessful struggles with plugging, fouling, and coking Histories and prevention of tray, packing, and internals damage Lessons taught by incidents and accidents during shutdowns, commissioning, and abnormal operation Troubleshooting distillation simulations to match the real world Making packing liquid distributors work Plant bottlenecks from intermediate draws, chimney trays, and feed points Histories of and key lessons from explosions and fires in distillation towers Prevention of flaws that impair reboiler and condenser performance Destabilization of tower control systems and how to correct it Discoveries from shutdown inspections Suppression of foam and accumulation incidents A unique resource for improving the foremost industrial separation process, Distillation Troubleshooting transforms decades of hands-on experiences into a handy reference for professionals and students involved in the operation, design, study, improvement, and management of large-scale distillation.
Discussing distillation, this book gives readers guidelines for operation, troubleshooting and control. It offers a compendium of Do's and Don'ts, good practices, and guidelines for trouble-free design; operation and troubleshooting for inlets and outlets; avoiding tray damage; installation; commissioning and startup techniques; and more.
Distillation: Operation and Applications—winner of the 2015 PROSE Award in Chemistry & Physics from the Association of American Publishers—is a single source of authoritative information on all aspects of the theory and practice of modern distillation, suitable for advanced students and professionals working in a laboratory, industrial plants, or a managerial capacity. It addresses the most important and current research on industrial distillation, including all steps in process design (feasibility study, modeling, and experimental validation), together with operation and control aspects. This volume features an extra focus on distillation applications. - Winner of the 2015 PROSE Award in Chemistry & Physics from the Association of American Publishers - Practical information on the newest development written by recognized experts - Coverage of a huge range of laboratory and industrial distillation approaches - Extensive references for each chapter facilitates further study
With a focus on the fundamentals and strategies of distillation columns, this book covers the process variables for continuous distillation columns, as well as four basic control strategies and the typical cases in which they are used. The author defines the inlet and outlet streams and process variables for a distillation column and then explains the overall concept of the separation and purification that is performed. Performance and product quality are described in terms of specification requirements, and tools and techniques for the optimization of quality performance are provided. Figures and graphs are included within the reference to illustrate concepts.
Providing coverage of design principles for distillation processes, this text contains a presentation of process and equipment design procedures. It also highlights limitations of some design methods, and offers guidance on how to overcome them.
Examines real life problems and solutions for operators and engineers running process controls Expands on the first book with the addition of five new chapters as well as new troubleshooting examples Written for the working operator and engineer, with straightforward instruction not hinged on complex math Includes real-life examples of control problems that commonly arise and how to fix them Emphasizes single and well-established process engineering principles that will help working engineers and operators switch manual control loops to automatic control
Vacuum systems are in wide spread use in the petrochemical plants, petroleum refineries and power generation plants. The existing texts on this subject are theoretical in nature and only deal with how the equipment functions when in good mechanical conditions, from the viewpoint of the equipment vendor. Also, the existing texts fail to consider the interaction of the vacuum system with the process equipment it serves and the variability of the motive steam conditions, change in cooling water temperature condenser fouling and erosion of the ejectors. Here are some of the many questions answered in this groundbreaking volume: Why does my first stage jet make a surging sound during hot weather? Why does the vacuum suddenly break? I've seen moisture condensing on the jet's body! What’s causing that? Why do I have to steam-out the drain legs from our condensers? Superheated steam is making our vacuum worse. Is this normal? How can I locate and measure air leaks? Reducing the steam pressure to my jets improves vacuum. But why? I can't pull the pre-condenser bundle. The shell side is fouling. What should I do? We're not getting our normal horsepower from our steam turbine. Could this be a jet problem? Raising the seal drum level improves vacuum! Is there an explanation for this? Our turbine exhaust steam pressure to our surface condenser has doubled in the last two years. What should we do? Restricting cooling water flow from our elevated condensers improves vacuum! Is this possible? What's a converging-diverging ejector all about? What's the difference between a barometric condenser and a surface condenser? Which is better?
After an overview of the fundamentals, limitations, and scope of reactive distillation, this book uses rigorous models for steady-state design and dynamic analysis of different types of reactive distillation columns and quantitatively compares the economics of reactive distillation columns with conventional multi-unit processes. It goes beyond traditional steady-state design that primarily considers the capital investment and energy costs when analyzing the control structure and the dynamic robustness of disturbances, and discusses how to maximize the economic and environmental benefits of reactive distillation technology.
Diagnose and Troubleshoot Problems in Chemical Process Equipment with This Updated Classic! Chemical engineers and plant operators can rely on the Third Edition of A Working Guide to Process Equipment for the latest diagnostic tips, practical examples, and detailed illustrations for pinpointing trouble and correcting problems in chemical process equipment. This updated classic contains new chapters on Control Valves, Cooling Towers, Waste Heat Boilers, Catalytic Effects, Fundamental Concepts of Process Equipment, and Process Safety. Filled with worked-out calculations, the book examines everything from trays, reboilers, instruments, air coolers, and steam turbines...to fired heaters, refrigeration systems, centrifugal pumps, separators, and compressors. The authors simplify complex issues and explain the technical issues needed to solve all kinds of equipment problems. Comprehensive and clear, the Third Edition of A Working Guide to Process Equipment features: Guidance on diagnosing and troubleshooting process equipment problems Explanations of how theory applies to real-world equipment operations Many useful tips, examples, illustrations, and worked-out calculations New to this edition: Control Valves, Cooling Towers, Waste Heat Boilers, Catalytic Effects, and Process Safety Inside this Renowned Guide to Solving Process Equipment Problems • Trays • Tower Pressure • Distillation Towers • Reboilers • Instruments • Packed Towers • Steam and Condensate Systems • Bubble Point and Dew Point • Steam Strippers • Draw-Off Nozzle Hydraulics • Pumparounds and Tower Heat Flows • Condensers and Tower Pressure Control • Air Coolers • Deaerators and Steam Systems • Vacuum Systems • Steam Turbines • Surface Condensers • Shell-and-Tube Heat Exchangers • Fire Heaters • Refrigeration Systems • Centrifugal Pumps • Separators • Compressors • Safety • Corrosion • Fluid Flow • Computer Modeling and Control • Field Troubleshooting Process Problems