Download Free Distances And Domination In Graphs Book in PDF and EPUB Free Download. You can read online Distances And Domination In Graphs and write the review.

This book presents a compendium of the 10 articles published in the recent Special Issue “Distance and Domination in Graphs”. The works appearing herein deal with several topics on graph theory that relate to the metric and dominating properties of graphs. The topics of the gathered publications deal with some new open lines of investigations that cover not only graphs, but also digraphs. Different variations in dominating sets or resolving sets are appearing, and a review on some networks’ curvatures is also present.
Total Domination in Graphs gives a clear understanding of this topic to any interested reader who has a modest background in graph theory. This book provides and explores the fundamentals of total domination in graphs. Some of the topics featured include the interplay between total domination in graphs and transversals in hypergraphs, and the association with total domination in graphs and diameter-2-critical graphs. Several proofs are included in this text which enables readers to acquaint themselves with a toolbox of proof techniques and ideas with which to attack open problems in the field. This work is an excellent resource for students interested in beginning their research in this field. Additionally, established researchers will find the book valuable to have as it contains the latest developments and open problems.
""Presents the latest in graph domination by leading researchers from around the world-furnishing known results, open research problems, and proof techniques. Maintains standardized terminology and notation throughout for greater accessibility. Covers recent developments in domination in graphs and digraphs, dominating functions, combinatorial problems on chessboards, and more.
"Provides the first comprehensive treatment of theoretical, algorithmic, and application aspects of domination in graphs-discussing fundamental results and major research accomplishments in an easy-to-understand style. Includes chapters on domination algorithms and NP-completeness as well as frameworks for domination."
This is the first book to comprehensively cover quantum probabilistic approaches to spectral analysis of graphs, an approach developed by the authors. The book functions as a concise introduction to quantum probability from an algebraic aspect. Here readers will learn several powerful methods and techniques of wide applicability, recently developed under the name of quantum probability. The exercises at the end of each chapter help to deepen understanding.
The contributions in this volume are divided into three sections: theoretical, new models and algorithmic. The first section focuses on properties of the standard domination number &ggr;(G), the second section is concerned with new variations on the domination theme, and the third is primarily concerned with finding classes of graphs for which the domination number (and several other domination-related parameters) can be computed in polynomial time.
This volume is the first of two containing selected papers from the International Conference on Advances in Mathematical Sciences (ICAMS), held at the Vellore Institute of Technology in December 2017. This meeting brought together researchers from around the world to share their work, with the aim of promoting collaboration as a means of solving various problems in modern science and engineering. The authors of each chapter present a research problem, techniques suitable for solving it, and a discussion of the results obtained. These volumes will be of interest to both theoretical- and application-oriented individuals in academia and industry. Papers in Volume I are dedicated to active and open areas of research in algebra, analysis, operations research, and statistics, and those of Volume II consider differential equations, fluid mechanics, and graph theory.
Economic applications of graphs ands equations, differnetiation rules for exponentiation of exponentials ...
This well-organized reference is a definitive encyclopedia for the literature on graph classes. It contains a survey of more than 200 classes of graphs, organized by types of properties used to define and characterize the classes, citing key theorems and literature references for each. The authors state results without proof, providing readers with easy access to far more key theorems than are commonly found in other mathematical texts. Interconnections between graph classes are also provided to make the book useful to a variety of readers.