Download Free Dissolved Oxygen Book in PDF and EPUB Free Download. You can read online Dissolved Oxygen and write the review.

This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.
This volume is of great importance to humans and other living organisms. The study of water quality draws information from a variety of disciplines including chemistry, biology, mathematics, physics, engineering, and resource management. University training in water quality is often limited to specialized courses in engineering, ecology, and fisheries curricula. This book also offers a basic understanding of water quality to professionals who are not formally trained in the subject. The revised third edition updates and expands the discussion, and incorporates additional figures and illustrative problems. Improvements include a new chapter on basic chemistry, a more comprehensive chapter on hydrology, and an updated chapter on regulations and standards. Because it employs only first-year college-level chemistry and very basic physics, the book is well-suited as the foundation for a general introductory course in water quality. It is equally useful as a guide for self-study and an in-depth resource for general readers.
Aquaculture is the science and technology of balanced support from the biological and engi producing aquatic plants and animals. It is not neering sciences. However, commercial aqua new, but has been practiced in certain Eastern culture has become so complex that, in order to cultures for over 2,000 years. However, the role be successful, one must also draw upon the ex of aquaculture in helping to meet the world's pertise of biologists, engineers, chemists, econ food shortages has become more recently ap omists, food technologists, marketing special parent. ists, lawyers, and others. The multidisciplinary The oceans of the world were once consid approach to aquaculture production became ap ered sources of an unlimited food supply. Bio parent during the early 1990s. It is believed that logical studies indicate that the maximum sus this trend will continue as aquaculture produc tainable yield of marine species through the tion becomes more and more intensive in order harvest of wild stock is 100 million MT (metric for the producer to squeeze as much product as tons) per year. Studies also indicate that we are possible out of a given parcel of land. Although many aquaculture books exist, few rapidly approaching the maximum sustainable yield of the world's oceans and major freshwa explore the engineering aspects of aquaculture ter bodies. Per capita consumption of fishery production.
This four-volume reference work builds upon the success of past editions of Elsevier’s Corrosion title (by Shreir, Jarman, and Burstein), covering the range of innovations and applications that have emerged in the years since its publication. Developed in partnership with experts from the Corrosion and Protection Centre at the University of Manchester, Shreir’s Corrosion meets the research and productivity needs of engineers, consultants, and researchers alike. Incorporates coverage of all aspects of the corrosion phenomenon, from the science behind corrosion of metallic and non-metallic materials in liquids and gases to the management of corrosion in specific industries and applications Features cutting-edge topics such as medical applications, metal matrix composites, and corrosion modeling Covers the benefits and limitations of techniques from scanning probes to electrochemical noise and impedance spectroscopy
Fundamentals of Quorum Sensing, Analytical Methods and Applications in Membrane Bioreactors, Volume 81, describes the novelty of membrane bioreactors for the treatment of wastewater and the removal of specific contaminants that affect water quality or pose harm to humans. Topics of note in the updated release include Water Chemistry and Microbiology, Quorum Sensing as Bacterial Communication Language, the Effects of Quorum Sensing, Quorum Quenching, Membrane Bioreactors for Wastewater Treatment, Removal of Specific Contaminants, Microextraction Techniques, and the Determination of Quorum Sensing Chemicals. The contents of this updated volume will be appealing to a wide range of researchers as the authors of most chapters are experts in their respective fields with numerous published studies. - Gives an overview of quorum sensing as a communication language for bacteria and quorum quenching mediated approaches to mitigate or eliminate the effects of quorum sensing - Presents various sensitive determination methods where a variety of microextraction strategies is used for preconcentration of analyte(s)
This classroom resource provides clear, concise scientific information in an understandable and enjoyable way about water and aquatic life. Spanning the hydrologic cycle from rain to watersheds, aquifers to springs, rivers to estuaries, ample illustrations promote understanding of important concepts and clarify major ideas. Aquatic science is covered comprehensively, with relevant principles of chemistry, physics, geology, geography, ecology, and biology included throughout the text. Emphasizing water sustainability and conservation, the book tells us what we can do personally to conserve for the future and presents job and volunteer opportunities in the hope that some students will pursue careers in aquatic science. Texas Aquatic Science, originally developed as part of a multi-faceted education project for middle and high school students, can also be used at the college level for non-science majors, in the home-school environment, and by anyone who educates kids about nature and water. To learn more about The Meadows Center for Water and the Environment, sponsors of this book's series, please click here.
Bioprocess Engineering involves the design and development of equipment and processes for the manufacturing of products such as food, feed, pharmaceuticals, nutraceuticals, chemicals, and polymers and paper from biological materials. It also deals with studying various biotechnological processes. "Bioprocess Kinetics and Systems Engineering" first of its kind contains systematic and comprehensive content on bioprocess kinetics, bioprocess systems, sustainability and reaction engineering. Dr. Shijie Liu reviews the relevant fundamentals of chemical kinetics-including batch and continuous reactors, biochemistry, microbiology, molecular biology, reaction engineering, and bioprocess systems engineering- introducing key principles that enable bioprocess engineers to engage in the analysis, optimization, design and consistent control over biological and chemical transformations. The quantitative treatment of bioprocesses is the central theme of this book, while more advanced techniques and applications are covered with some depth. Many theoretical derivations and simplifications are used to demonstrate how empirical kinetic models are applicable to complicated bioprocess systems. - Contains extensive illustrative drawings which make the understanding of the subject easy - Contains worked examples of the various process parameters, their significance and their specific practical use - Provides the theory of bioprocess kinetics from simple concepts to complex metabolic pathways - Incorporates sustainability concepts into the various bioprocesses