Download Free Disruptive Innovation And Naval Power Strategic And Financial Implications Of Unmanned Underwater Vehicles Uuvs And Long Term Underwater Power Sources Book in PDF and EPUB Free Download. You can read online Disruptive Innovation And Naval Power Strategic And Financial Implications Of Unmanned Underwater Vehicles Uuvs And Long Term Underwater Power Sources and write the review.

The naval warfare environment is rapidly changing. The U.S. Navy is adapting by continuing its blue-water dominance while simultaneously building brown-water capabilities. Unmanned systems, such as unmanned airborne drones, are proving pivotal in facing new battlefield challenges. Unmanned underwater vehicles (UUVs) are emerging as the Navy's seaborne equivalent of the Air Force's drones. Representing a low-end disruptive technology relative to traditional shipborne operations, UUVs are becoming capable of taking on increasingly complex roles, tipping the scales of battlefield entropy. They improve mission outcomes and operate for a fraction of the cost of traditional operations. Furthermore, long-term underwater power sources at currently under development at MIT will extend UUV range and operational endurance by an order of magnitude. Installing these systems will not only allow UUVs to complete new, previously impossible missions, but will also radically decrease costs. I explore the financial and strategic implications of UUVs and long-term underwater power sources to the Navy and its future operations. By examining current naval operations and the ways in which UUVs could complement or replace divers and ships, I identify ways to use UUV technology to reduce risk to human life, decrease costs, and leverage the technology learning curve. I conclude that significant cost savings are immediately available with the widespread use of UUVs, and current research investment levels are inadequate in comparison with the risks and rewards of UUV programs.
There is a growing concern over the ubiquitous distribution of plastic pollution that is evolving in the Beaufort Gyre in the Arctic Ocean, prompting international collaboration and new environmental measures. Marine pollution is recognised as an immediate threat to both land and marine ecosystems. Satellites have proven useful in identifying ocean plastic patches and current movements in other oceans but little research has been applied to the Arctic, a region that impacts eight countries making up the Arctic Circle. This interdisciplinary team project investigates the use of Sentinel-2, Sentinel-6, Fourier-Transform Spectroscopy, stratospheric balloons and autonomous underwater vehicles to provide an integrated strategy, including communication and outreach, to tackling marine plastic pollution while recognizing that it is necessary to also prevent plastics from entering the ocean in the first place.
Today our naval forces enjoy maritime superiority around the world and find themselves at a strategic inflection point during which future capabilities must be pondered with creativity and innovation. Change must be embraced and made an ally in order to take advantage of emerging technologies, concepts, and doctrine; thereby preserving the nation's global leadership. Sea Power 21 has additionally specified unmanned vehicles as force multipliers and risk reduction agents for the Navy of the future. Transformation applies to what we buy as well as how we buy and operate it-all while competing with other shifting national investment priorities. The long-term UUV vision is to have the capability to: (1) deploy or retrieve devices, (2) gather, transmit, or act on all types of information, and (3) engage bottom, volume, surface, air or land targets (See Figure 1-1). The growing use of unmanned systems-air, surface, ground, and underwater is continually demonstrating new possibilities. One can conceive of scenarios where UUVs sense, track, identify, target, and destroy an enemy-all autonomously and tie in with the full net-centric battlespace. UUV systems will provide a key undersea component for FORCEnet, contributing to an integrated picture of the battlespace. Admittedly this vision is futuristic. Even though today's planners, operators, and technologists cannot accurately forecast the key applications for UUVs in the year 2050, this plan provides a roadmap to move toward that vision. Pursuit of this plan's updated recommendations beginning in the year 2004, will place increasingly large numbers of UUVs in the hands of warfighters. Thus, UUVs can begin addressing near-term needs while improving understanding of mid- to far-term possibilities. Even the most futuristic applications can evolve in a confident, cost-effective manner. This confidence is based on several factors: the Sea Power 21 Sub-Pillar capabilities identified here address a broad range of user needs; critical technologies are identified that will enable tomorrow's more complex applications; and key principles and best practices are recommended that provide for a logical, flexible, and affordable development effort.
The Navy wants to develop and procure three new types of unmanned vehicles (UVs) in FY2020 and beyond-Large Unmanned Surface Vehicles (LUSVs), Medium Unmanned Surface Vehicles (MUSVs), and Extra-Large Unmanned Undersea Vehicles (XLUUVs). The Navy is requesting $628.8 million in FY2020 research and development funding for these three UV programs and their enabling technologies. The Navy wants to acquire these three types of UVs (which this report refers to collectively as large UVs) as part of an effort to shift the Navy to a new fleet architecture (i.e., a new combination of ships and other platforms) that is more widely distributed than the Navy's current architecture. Compared to the current fleet architecture, this more-distributed architecture is to include proportionately fewer large surface combatants (i.e., cruisers and destroyers), proportionately more small surface combatants (i.e., frigates and Littoral Combat Ships), and the addition of significant numbers of large UVs. The Navy wants to employ accelerated acquisition strategies for procuring these large UVs, so as to get them into service more quickly. The emphasis that the Navy placed on UV programs in its FY2020 budget submission and the Navy's desire to employ accelerated acquisition strategies in acquiring these large UVs together can be viewed as an expression of the urgency that the Navy attaches to fielding large UVs for meeting future military challenges from countries such as China. The LUSV program is a proposed new start project for FY2020. The Navy wants to procure two LUSVs per year in FY2020FY2024. The Navy wants LUSVs to be low-cost, high-endurance, reconfigurable ships based on commercial ship designs, with ample capacity for carrying various modular payloads-particularly anti-surface warfare (ASuW) and strike payloads, meaning principally anti-ship and land-attack missiles. The Navy reportedly envisions LUSVs as being 200 feet to 300 feet in length and having a full load displacement of about 2,000 tons. The MUSV program began in FY2019. The Navy plans to award a contract for the first MUSV in FY2019 and wants to award a contract for the second MUSV in FY2023. The Navy wants MUSVs, like LUSVs, to be low-cost, high-endurance, reconfigurable ships that can accommodate various payloads. Initial payloads for MUSVs are to be intelligence, surveillance and reconnaissance (ISR) payloads and electronic warfare (EW) systems. The Navy defines MUSVs as having a length of between 12 meters (about 39 feet) and 50 meters (about 164 feet). The Navy wants to pursue the MUSV program as a rapid prototyping effort under what is known as Section 804 acquisition authority. The XLUUV program, also known as Orca, was established to address a Joint Emergent Operational Need (JEON). The Navy wants to procure nine XLUUVs in FY2020-FY2024. The Navy announced on February 13, 2019, that it had selected Boeing to fabricate, test, and deliver the first four Orca XLUUVs and associated support elements. On March 27, 2019, the Navy announced that the award to Boeing had been expanded to include the fifth Orca. The Navy's large UV programs pose a number of oversight issues for Congress, including issues relating to the analytical basis for the more-distributed fleet architecture; the Navy's accelerated acquisition strategies and funding method for these programs; technical, schedule, and cost risk in the programs; the proposed annual procurement rates for the programs; the industrial base implications of the programs; the personnel implications of the programs; and whether the Navy has accurately priced the work it is proposing to do in FY2020 on the programs.
Environmental information is important for successful planning and execution of naval operations. A thorough understanding of environmental variability greatly increases the likelihood of mission success. To ensure that naval forces have the most up-to-date capabilities, the Office of Naval Research (ONR) has an extensive environmental research program. This research, to be of greatest use to the warfighter, needs to be directed towards assisting and solving battlefield problems. To increase research community understanding of the operational demands placed on naval operators and to facilitate discussion between these two groups, the National Research Council's (NRC) Ocean Studies Board (OSB), working with ONR and the Office of the Oceanographer of the Navy, convened five previous symposia on tactical oceanography. Oceanography and Mine Warfare examines the following issues: (1) how environmental data are used in current mine warfare doctrine, (2) current procedures for in situ collection of data, (3) the present capabilities of the Navy's oceanographic community to provide supporting information for mine warfare operations, and (4) the ability of oceanographic research and technology developments to enhance current mine warfare capabilities. This report primarily concentrates on the importance of oceanographic data for mine countermeasures.
The oceans are a hostile environment, and gathering information on deep-sea life and the seabed is incredibly difficult. Autonomous underwater vehicles are robot submarines that are revolutionizing the way in which researchers and industry obtain data. Advances in technology have resulted in capable vehicles that have made new discoveries on how th
The Department of the Navy strives to maintain, through its Office of Naval Research (ONR), a vigorous science and technology (S&T) program in those areas considered critically important to U.S. naval superiority in the maritime environment, including littoral waters and shore regions. In pursuing its S&T investments in such areas, ONR must ensure that (1) a robust U.S. research capability to work on long-term S&T problems in areas of interest to the Department of the Navy and the Department of Defense is sustained, (2) an adequate supply of new scientists and engineers in these areas is maintained, and (3) S&T products and processes necessary to ensure future superiority in naval warfare are provided. One of the critical areas for the Department of the Navy is undersea weapons. An Assessment of Undersea Weapons Science and Technology assesses the health of the existing Navy program in undersea weapons, evaluates the Navy's research effort to develop the capabilities needed for future undersea weapons, identifies non-Navy-sponsored research and development efforts that might facilitate the development of such advanced weapons capabilities, and makes recommendations to focus the Navy's research program so that it can meet future needs.
Which military missions for unmanned undersea vehicles (UUVs) appear most promising to pursue in terms of military need, operational and technical risks, alternatives, and cost? To answer this question, the authors assess risks associated with using UUVs for advocated missions, identify non-UUV alternatives that may be more appropriate for such missions, and analyze potential costs associated with UUV development and use. They conclude that seven missions: mine countermeasures, deployment of leave-behind surveillance sensors or sensor arrays, near-land and harbor monitoring, oceanography, monitoring undersea infrastructure, anti-submarine warfare tracking, and inspection/identification - appear most promising. Among other recommendations, the authors suggest that the U.S. Navy consolidate its unmanned system master plans and establish relevant priorities in coordination with the Office of the Secretary of Defense. Increased emphasis on the use of surface platforms rather than submarines as host platforms is recommended.
Unmanned marine vehicles (UMVs) include autonomous underwater vehicles, remotely operated vehicles, semi-submersibles and unmanned surface craft. Considerable importance is being placed on the design and development of such vehicles, as they provide cost-effective solutions to a number of littoral, coastal and offshore problems. This book highlights the advanced technology that is evolving to meet the challenges being posed in this exciting and growing area of research.