Download Free Disposal And Storage Of Spent Nuclear Fuel Book in PDF and EPUB Free Download. You can read online Disposal And Storage Of Spent Nuclear Fuel and write the review.

In response to a request from Congress, the Nuclear Regulatory Commission and the Department of Homeland Security sponsored a National Academies study to assess the safety and security risks of spent nuclear fuel stored in cooling pools and dry casks at commercial nuclear power plants. The information provided in this book examines the risks of terrorist attacks using these materials for a radiological dispersal device. Safety and Security of Commercial Spent Nuclear Fuel is an unclassified public summary of a more detailed classified book. The book finds that successful terrorist attacks on spent fuel pools, though difficult, are possible. A propagating fire in a pool could release large amounts of radioactive material, but rearranging spent fuel in the pool during storage and providing emergency water spray systems would reduce the likelihood of a propagating fire even under severe damage conditions. The book suggests that additional studies are needed to better understand these risks. Although dry casks have advantages over cooling pools, pools are necessary at all operating nuclear power plants to store at least the recently discharged fuel. The book explains it would be difficult for terrorists to steal enough spent fuel to construct a significant radiological dispersal device.
Focused attention by world leaders is needed to address the substantial challenges posed by disposal of spent nuclear fuel from reactors and high-level radioactive waste from processing such fuel. The biggest challenges in achieving safe and secure storage and permanent waste disposal are societal, although technical challenges remain. Disposition of radioactive wastes in a deep geological repository is a sound approach as long as it progresses through a stepwise decision-making process that takes advantage of technical advances, public participation, and international cooperation. Written for concerned citizens as well as policymakers, this book was sponsored by the U.S. Department of Energy, U.S. Nuclear Regulatory Commission, and waste management organizations in eight other countries.
In May 2003, the Russian Academy of Sciences and the National Academies organized an international workshop in Moscow on the scientific issues relevant to the establishment and operation of an international spent nuclear fuel storage facility in Russia. Given the broad international interest in this topic, the academies organized a second international workshop on important issues that were not on the agenda or were not adequately discussed at the first workshop. These issues included international monitoring at the facility, transportation requirements, liability and insurance concerns, and status of Russian legislation and regulations that are important in locating and operating a facility. Relevant experience from Europe, the United States, and Asia was also considered in this 2005 workshop. This book contains the papers presented at the 2005 workshop sessions, as well as proceedings from the 2003 workshop. Together they provide an overview of the issues, and useful background for those organizations and individuals involved in further development of an international spent nuclear fuel storage facility in Russia.
Regardless of the outcome of the ongoing debate about the proposed Yucca Mountain geologic waste repository in Nevada, the storage of spent nuclear fuel (SNF)—also referred to as “highlevel nuclear waste”—will continue to be needed and the issue will continue to be debated. The need for SNF storage, even after the first repository is opened, will continue for a few reasons. The Obama Administration terminated work on the only planned permanent geologic repository at Yucca Mountain, which was intended to provide a destination for most of the stored SNF. Also, the Yucca Mountain project was not funded by Congress in FY2011 and FY2012, and not included in the Administration's budget request for FY2013. Even if the planned repository had been completed, the quantity of SNF and other high-level waste in storage awaiting final disposal now exceeds the legal limit for the first repository under the Nuclear Waste Policy Act (NWPA). The expected rate of shipment of SNF to the repository would require decades to remove existing SNF from interim storage. Accordingly, the U.S. Nuclear Regulatory Commission (NRC) and reactor operators are considering extended SNF storage lasting for more than 100 years. The debate about SNF typically involves where and how it is stored, as well as what strategies and institutions should govern SNF storage. The earthquake and tsunami in Japan, and resulting damage to the Fukushima Dai-ichi nuclear power plant, caused some in Congress and NRC to consider the adequacy of protective measures at U.S. reactors. The NRC Near-Term Task Force on the disaster concluded it has “not identified any issues that undermine our confidence in the continued safety and emergency planning of U.S. plants.” Nonetheless, NRC has accepted a number of staff recommendations on near-term safety enhancement, including requirements affecting spent fuel storage and prevention and coping with station blackout. NRC is not requiring accelerated transfer of SNF from wet pools to dry casks, but the SNF storage data from the last several years indicate that accelerated transfer has already been occurring. This report focuses on the current situation with spent nuclear fuel storage in the United States. It does not address all of the issues associated with permanent disposal of SNF, but rather focuses on the SNF storage situation, primarily at current and former reactor facilities for the potentially foreseeable future.~
Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, Second Edition, critically reviews state-of-the-art technologies and scientific methods relating to the implementation of the most effective approaches to the long-term, safe disposition of nuclear waste, also discussing regulatory developments and social engagement approaches as major themes. Chapters in Part One introduce the topic of geological disposal, providing an overview of near-surface, intermediate depth, and deep borehole disposal, spanning low-, medium- and high-level wastes. Part Two addresses the different types of repository systems – crystalline, clay, and salt, also discussing methods of site surveying and construction. The critical safety issue of engineered barrier systems is the focus of Part Three, with coverage ranging from nuclear waste canisters, to buffer and backfill materials. Lastly, Parts Four and Five focus on safety, security, and acceptability, concentrating on repository performance assessment, then radiation protection, environmental monitoring, and social engagement. Comprehensively revised, updated, and expanded with 25% new material on topics of current importance, this is the standard reference for all nuclear waste management and geological repository professionals and researchers. Contains 25% more material on topics of current importance in this new, comprehensive edition Fully updated coverage of both near-surface/intermediate depth, and deep borehole disposal in one convenient volume Goes beyond the scientific and technical aspects of disposal to include the political, regulatory, and societal issues involved, all from an international perspective
This report looks at the Nuclear Waste Policy Act of 1982 (NWPA), Yucca Mountain, and the Obama Administration's de-funding of Yucca Mountain. Federal policy is based on the premise that nuclear waste can be disposed of safely, but proposed storage and disposal facilities have frequently been challenged on safety, health, and environmental grounds. Most of the current debate surrounding civilian radioactive waste focuses on highly radioactive spent fuel from nuclear power plants.