Download Free Disjunctive Conic Cuts For Mixed Integer Second Order Cone Optimization Book in PDF and EPUB Free Download. You can read online Disjunctive Conic Cuts For Mixed Integer Second Order Cone Optimization and write the review.

This book constitutes the refereed proceedings of the 17th International Conference on Integer Programming and Combinatorial Optimization, IPCO 2014, held in Bonn, Germany, in June 2014. The 34 full papers presented were carefully reviewed and selected from 143 submissions. The conference is a forum for researchers and practitioners working on various aspects of integer programming and combinatorial optimization. The aim is to present recent developments in theory, computation, and applications in these areas. The scope of IPCO is viewed in a broad sense, to include algorithmic and structural results in integer programming and combinatorial optimization as well as revealing computational studies and novel applications of discrete optimization to practical problems.
This book features a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in B ethlehem, Pennsylvania, USA between August 16-18, 2017. The conference brought together a diverse group of researchers and practitioners working on both theoretical and practical aspects of continuous and discrete optimization. Topics covered include algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and address the application of deterministic andstochastic optimization techniques in energy, finance, logistics, analytics, health, and other important fields. The selected contributions in this book illustrate the broad diversity of ideas discussed at the meeting.
This book constitutes the refereed proceedings of the 21st International Conference on Integer Programming and Combinatorial Optimization, IPCO 2020, held in London, UK, in June 2020. The 33 full versions of extended abstracts presented were carefully reviewed and selected from 126 submissions. The conference is a forum for researchers and practitioners working on various aspects of integer programming and combinatorial optimization. The aim is to present recent developments in theory, computation, and applications in these areas.
Presenting the latest findings in the field of numerical analysis and optimization, this volume balances pure research with practical applications of the subject. Accompanied by detailed tables, figures, and examinations of useful software tools, this volume will equip the reader to perform detailed and layered analysis of complex datasets. Many real-world complex problems can be formulated as optimization tasks. Such problems can be characterized as large scale, unconstrained, constrained, non-convex, non-differentiable, and discontinuous, and therefore require adequate computational methods, algorithms, and software tools. These same tools are often employed by researchers working in current IT hot topics such as big data, optimization and other complex numerical algorithms on the cloud, devising special techniques for supercomputing systems. The list of topics covered include, but are not limited to: numerical analysis, numerical optimization, numerical linear algebra, numerical differential equations, optimal control, approximation theory, applied mathematics, algorithms and software developments, derivative free optimization methods and programming models. The volume also examines challenging applications to various types of computational optimization methods which usually occur in statistics, econometrics, finance, physics, medicine, biology, engineering and industrial sciences.
Disjunctive Programming is a technique and a discipline initiated by the author in the early 1970's, which has become a central tool for solving nonconvex optimization problems like pure or mixed integer programs, through convexification (cutting plane) procedures combined with enumeration. It has played a major role in the revolution in the state of the art of Integer Programming that took place roughly during the period 1990-2010. The main benefit that the reader may acquire from reading this book is a deeper understanding of the theoretical underpinnings and of the applications potential of disjunctive programming, which range from more efficient problem formulation to enhanced modeling capability and improved solution methods for integer and combinatorial optimization. Egon Balas is University Professor and Lord Professor of Operations Research at Carnegie Mellon University's Tepper School of Business.
This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on July 30-August 1, 2012. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of optimization techniques in finance, logistics, health, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting.
Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.
This book constitutes the refereed proceedings of the 18th International Conference on Integer Programming and Combinatorial Optimization, IPCO 2016, held in Liège, Belgium, in June 2016. The 33 full papers presented were carefully reviewed and selected from 125 submissions. The conference is a forum for researchers and practitioners working on various aspects of integer programming and combinatorial optimization. The aim is to present recent developments in theory, computation, and applications in these areas. The scope of IPCO is viewed in a broad sense, to include algorithmic and structural results in integer programming and combinatorial optimization as well as revealing computational studies and novel applications of discrete optimization to practical problems.
This book constitutes the refereed proceedings of the 23rd International Conference on Integer Programming and Combinatorial Optimization, IPCO 2022, held in Eindhoven, The Netherlands, in June 2022. The 33 full papers presented were carefully reviewed and selected from 93 submissions addressing key techniques of document analysis. IPCO is under the auspices of the Mathematical Optimization Society, and it is an important forum for presenting the latest results of theory and practice of the various aspects of discrete optimization.
This book constitutes the refereed proceedings of the 12th International Conference on Integer Programming and Combinatorial Optimization, IPCO 2007, held in Ithaca, NY, USA, in June 2007. Among the topics addressed in the 36 revised full papers are approximation algorithms, algorithmic game theory, computational biology, integer programming, polyhedral combinatorics, scheduling theory and scheduling algorithms, as well as semidefinite programs.