Download Free Disease Of Cereals And Pulses Book in PDF and EPUB Free Download. You can read online Disease Of Cereals And Pulses and write the review.

Symptoms are produced on almost all aerial parts of the wheat plant but are most common on stem, leaf sheaths and upper and lower leaf surfaces. Uredial pustules (or sori) are oval to spindle shaped and dark reddish brown (rust) in color. They erupt through the epidermis of the host and are surrounded by tattered host tissue. The pustules are dusty in appearance due to the vast number of spores produced. Spores are readily released when touched.
Take-all is the most important root disease of cereals worldwide and a major disease problem in northern European wheat-growing regions. It is regarded by many as an intractable problem because of the lack of economically-viable chemical controls and resistant cultivars. It remains one of the great challenges of plant pathology and serves as an ideal model for many of the problems of root diseases in general. This book, an initiative of the IACR/ADAS/Universities Cereal Root Pathology Group, is the first since 1981 to provide an up-to-date review of the practical aspects of take-all research. It contains the experience of several contributors with long and active careers in take-all research or the advisory services and includes a comprehensive worldwide bibliography of relevant literature published over the last 15 years. The book concentrates on Europe, particularly the UK and France, and this regional theme is developed through comparisons with approaches used in, for example, North America and Australia. Chapters deal with history, disease and epidemiology, take-all in relation to cereal production systems, strategies for management, the pathogens and related fungi, field techniques and future prospects. This book is essential reading for advanced students and professionals in cereal crop protection research and will be of interest to plant pathologists as well as agricultural advisors.
The small grain cereals wheat, barley, oats and rye are cultivated worldwide. They form the foundation of most agricultural systems and are essential in the manufacture of staple products such as bread, pasta and fermented beverages. Reflecting the global and economic importance of cereal crops, this book aims to make identification of diseases aff
Cereal and pulse crops are staple foods that provide essential nutrients to many populations of the world. Traditionally, whole grains were consumed but most current foods are derived from refined fractions of cereal and pulse crops. Consumption of processed or refined products may reduce the health benefits of food. In wheat-based processed foods, for example, the removed 40% of the grain (mainly the bran and the germ of the wheat grain) contains the majority of the health beneficial components. These components, particularly non-essential phytochemicals such as carotenoids, polyphenols, phytosterols/ stanols, and dietary fibers, have been shown to reduce the risk of major chronic diseases of humans, such as cancer, cardiovascular diseases, and Parkinson’s disease. Such bioactives are therefore good candidates for ingredients of nutraceuticals and functional foods. There are many factors that can affect the bioactive content of cereal and pulse-based food ingredients, including genetics, growing and storage conditions, post-harvest treatments, food formulation and processing. All of these factors ultimately affect human health and wellness. Bioavailability is also important for these compounds for exerting their protective roles. Cereals and Pulses: Nutraceutical Properties and Health Benefits provides a summary of current research findings related to phytochemical composition and properties of cereal and pulse crops. The nutraceutical properties of each major cereal and pulse are discussed. Coverage of cereals and pulse crops includes barley, oats, rice, rye, corn, adlay, wheat, buckwheat, psyllium, sorghum, millet, common beans, field peas, faba beans, chickpea, lentil and soybeans. Chapters for each crop discuss methods to improve crop utilization, nutraceutical components and properties, bioactive compositions, antioxidant properties, beneficial health effects, disease prevention activities, and areas for future research. Also included are two chapters that examine the beneficial health properties of dietary fibers and antioxidants. Edited and written by an international team of respected researchers, this book is a reference guide for scientists working in food ingredients, food product research and development, functional foods and nutraceuticals, crop breeding and genetics, human nutrition, post-harvest treatment and processing of cereal grains and pulses. It will enable them to effect value-added food innovation for health promotion and disease risk reduction.
Blast is an important foliar disease that infects the majority of cereal crops like rice, finger millet, pearl millet, foxtail millet and wheat, and thus resulting in a huge economic impact. The pathogen is responsible for causing epidemics in many crops and commonly shifts to new hosts. Magnaporthe spp. is the most prominent cause of blast disease on a broad host range of grasses including rice as well as other species of poaceae family. To date, 137 members of Poaceae hosting this fungus have been described in Fungal Databases. This book provides information on all blast diseases of different cereal crops. The pathogen evolves quickly due to its high variability, and thus can quickly adapt to new cultivars and cause an epidemic in a given crop. Some of the topics covered here include historical perspectives, pathogen evolution, host range shift, cross-infectivity, and pathogen isolation, use of chemicals fungicides, genetics and genomics, and management of blast disease in different cereal crops with adoption of suitable methodologies.In the past two decades there have been significant developments in genomics and proteomics approaches and there has been substantial and rapid progress in the cloning and mapping of R genes for blast resistance, as well as in comparative genomics analysis for resolving delineation of Magnaporthe species that infect both cereals and grass species. Blast disease resistance follows a typical gene-for-gene hypothesis. Identification of new Avr genes and effector molecules from Magnaporthe spp. can be useful to understand the molecular mechanisms involved in the fast evolution of different strains of this fungal genus. Advances in these areas may help to reduce the occurrence of blast disease by the identification of potential R genes for effective deployment. Additionally, this book highlights the importance of blast disease that infects different cereal hosts in the context of climate change, and genomics approaches that may potentially help in understanding and applying new concepts and technologies that can make real impact in sustainable management of blast disease in different cereal crops.