Download Free Discrete Time Concurrent Learning For System Identification And Applications Book in PDF and EPUB Free Download. You can read online Discrete Time Concurrent Learning For System Identification And Applications and write the review.

Following the successful 1st CEAS (Council of European Aerospace Societies) Specialist Conference on Guidance, Navigation and Control (CEAS EuroGNC) held in Munich, Germany in 2011, Delft University of Technology happily accepted the invitation of organizing the 2nd CEAS EuroGNC in Delft, The Netherlands in 2013. The goal of the conference is to promote new advances in aerospace GNC theory and technologies for enhancing safety, survivability, efficiency, performance, autonomy and intelligence of aerospace systems using on-board sensing, computing and systems. A great push for new developments in GNC are the ever higher safety and sustainability requirements in aviation. Impressive progress was made in new research fields such as sensor and actuator fault detection and diagnosis, reconfigurable and fault tolerant flight control, online safe flight envelop prediction and protection, online global aerodynamic model identification, online global optimization and flight upset recovery. All of these challenges depend on new online solutions from on-board computing systems. Scientists and engineers in GNC have been developing model based, sensor based as well as knowledge based approaches aiming for highly robust, adaptive, nonlinear, intelligent and autonomous GNC systems. Although the papers presented at the conference and selected in this book could not possibly cover all of the present challenges in the GNC field, many of them have indeed been addressed and a wealth of new ideas, solutions and results were proposed and presented. For the 2nd CEAS Specialist Conference on Guidance, Navigation and Control the International Program Committee conducted a formal review process. Each paper was reviewed in compliance with good journal practice by at least two independent and anonymous reviewers. The papers published in this book were selected from the conference proceedings based on the results and recommendations from the reviewers.
​Hybrid System Identification helps readers to build mathematical models of dynamical systems switching between different operating modes, from their experimental observations. It provides an overview of the interaction between system identification, machine learning and pattern recognition fields in explaining and analysing hybrid system identification. It emphasises the optimization and computational complexity issues that lie at the core of the problems considered and sets them aside from standard system identification problems. The book presents practical methods that leverage this complexity, as well as a broad view of state-of-the-art machine learning methods. The authors illustrate the key technical points using examples and figures to help the reader understand the material. The book includes an in-depth discussion and computational analysis of hybrid system identification problems, moving from the basic questions of the definition of hybrid systems and system identification to methods of hybrid system identification and the estimation of switched linear/affine and piecewise affine models. The authors also give an overview of the various applications of hybrid systems, discuss the connections to other fields, and describe more advanced material on recursive, state-space and nonlinear hybrid system identification. Hybrid System Identification includes a detailed exposition of major methods, which allows researchers and practitioners to acquaint themselves rapidly with state-of-the-art tools. The book is also a sound basis for graduate and undergraduate students studying this area of control, as the presentation and form of the book provides the background and coverage necessary for a full understanding of hybrid system identification, whether the reader is initially familiar with system identification related to hybrid systems or not.
Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.
SIMULATION TECHNIQUES OF DIGITAL TWIN IN REAL-TIME APPLICATIONS The book gives a complete overview of implementing digital twin technology in real-time scenarios while emphasizing how this technology can be embedded with running technologies to solve all other issues. Divided into two parts with Part 1 focusing on simulated techniques in digital twin technology and Part 2 on real-time applications of digital twin technology, the book collects a significant number of important research articles from domain-specific experts. The book sheds light on the various techniques of digital twin technology that are implemented in various application areas. It emphasizes error findings and respective solutions before the actual event happens. Most of the features in the book are on the implementation of strategies in real-time applications. Various real-life experiences are taken to show the proper implementation of simulation technologies. The book shows how engineers of any technology can input their research ideas to convert to real scenarios by using replicas. Hence, the book has a collection of research articles from various engineers with expertise in different technologies from many regions of the world. It shows how to implement the embedded real-time data into technologies. Specifically, the chapters relate to the auto landing and cruising features in aerial vehicles, automated coal mining simulation strategy, the enhancement of workshop equipment, and implementation in power energy management for urban railways. This book also describes the coherent mechanism of digital twin technologies with deep neural networks and artificial intelligence. Audience Researchers, engineers, and students in computer science, software engineering and industrial engineering, will find this book to be very useful.
The Symposium covered three major areas: adaptive control, identification and signal processing. In all three, new developments were discussed covering both theoretical and applications research. Within the subject area of adaptive control the discussion centred around the challenges of robust control design to unmodelled dynamics, robust parameter estimation and enhanced performance from the estimator, while the papers on identification took the theme of it being a bridge between adaptive control and signal processing. The final area looked at two aspects of signal processing: recursive estimation and adaptive filters.
Designed to meet the needs of a wide audience without sacrificing mathematical depth and rigor, Adaptive Control Tutorial presents the design, analysis, and application of a wide variety of algorithms that can be used to manage dynamical systems with unknown parameters. Its tutorial-style presentation of the fundamental techniques and algorithms in adaptive control make it suitable as a textbook. Adaptive Control Tutorial is designed to serve the needs of three distinct groups of readers: engineers and students interested in learning how to design, simulate, and implement parameter estimators and adaptive control schemes without having to fully understand the analytical and technical proofs; graduate students who, in addition to attaining the aforementioned objectives, also want to understand the analysis of simple schemes and get an idea of the steps involved in more complex proofs; and advanced students and researchers who want to study and understand the details of long and technical proofs with an eye toward pursuing research in adaptive control or related topics. The authors achieve these multiple objectives by enriching the book with examples demonstrating the design procedures and basic analysis steps and by detailing their proofs in both an appendix and electronically available supplementary material; online examples are also available. A solution manual for instructors can be obtained by contacting SIAM or the authors. Preface; Acknowledgements; List of Acronyms; Chapter 1: Introduction; Chapter 2: Parametric Models; Chapter 3: Parameter Identification: Continuous Time; Chapter 4: Parameter Identification: Discrete Time; Chapter 5: Continuous-Time Model Reference Adaptive Control; Chapter 6: Continuous-Time Adaptive Pole Placement Control; Chapter 7: Adaptive Control for Discrete-Time Systems; Chapter 8: Adaptive Control of Nonlinear Systems; Appendix; Bibliography; Index
Introduction to Discrete Event Systems is a comprehensive introduction to the field of discrete event systems, offering a breadth of coverage that makes the material accessible to readers of varied backgrounds. The book emphasizes a unified modeling framework that transcends specific application areas, linking the following topics in a coherent manner: language and automata theory, supervisory control, Petri net theory, Markov chains and queuing theory, discrete-event simulation, and concurrent estimation techniques. This edition includes recent research results pertaining to the diagnosis of discrete event systems, decentralized supervisory control, and interval-based timed automata and hybrid automata models.
Intelligent systems, or artificial intelligence technologies, are playing an increasing role in areas ranging from medicine to the major manufacturing industries to financial markets. The consequences of flawed artificial intelligence systems are equally wide ranging and can be seen, for example, in the programmed trading-driven stock market crash of October 19, 1987. Intelligent Systems: Technology and Applications, Six Volume Set connects theory with proven practical applications to provide broad, multidisciplinary coverage in a single resource. In these volumes, international experts present case-study examples of successful practical techniques and solutions for diverse applications ranging from robotic systems to speech and signal processing, database management, and manufacturing.