Download Free Discrete Mathematics With Graph Theory Classic Version Book in PDF and EPUB Free Download. You can read online Discrete Mathematics With Graph Theory Classic Version and write the review.

This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. Far more "user friendly" than the vast majority of similar books, this text is truly written with the "beginning" reader in mind. The pace is tight, the style is light, and the text emphasizes theorem proving throughout. The authors emphasize "Active Reading," a skill vital to success in learning how to think mathematically (and write clean, error-free programs).
This textbook can serve as a comprehensive manual of discrete mathematics and graph theory for non-Computer Science majors; as a reference and study aid for professionals and researchers who have not taken any discrete math course before. It can also be used as a reference book for a course on Discrete Mathematics in Computer Science or Mathematics curricula. The study of discrete mathematics is one of the first courses on curricula in various disciplines such as Computer Science, Mathematics and Engineering education practices. Graphs are key data structures used to represent networks, chemical structures, games etc. and are increasingly used more in various applications such as bioinformatics and the Internet. Graph theory has gone through an unprecedented growth in the last few decades both in terms of theory and implementations; hence it deserves a thorough treatment which is not adequately found in any other contemporary books on discrete mathematics, whereas about 40% of this textbook is devoted to graph theory. The text follows an algorithmic approach for discrete mathematics and graph problems where applicable, to reinforce learning and to show how to implement the concepts in real-world applications.
This comprehensive and self-contained text provides a thorough understanding of the concepts and applications of discrete mathematics and graph theory. It is written in such a manner that beginners can develop an interest in the subject. Besides providing the essentials of theory, the book helps develop problem-solving techniques and sharpens the skill of thinking logically. The book is organized in two parts. The first part on discrete mathematics covers a wide range of topics such as predicate logic, recurrences, generating function, combinatorics, partially ordered sets, lattices, Boolean algebra, finite state machines, finite fields, elementary number theory and discrete probability. The second part on graph theory covers planarity, colouring and partitioning, directed and algebraic graphs. In the Second Edition, more exercises with answers have been added in various chapters. Besides, an appendix on languages has also been included at the end of the book. The book is intended to serve as a textbook for undergraduate engineering students of computer science and engineering, information communication technology (ICT), and undergraduate and postgraduate students of mathematics. It will also be useful for undergraduate and postgraduate students of computer applications. KEY FEATURES • Provides algorithms and flow charts to explain several concepts. • Gives a large number of examples to illustrate the concepts discussed. • Includes many worked-out problems to enhance the student’s grasp of the subject. • Provides exercises with answers to strengthen the student’s problem-solving ability. AUDIENCE • Undergraduate Engineering students of Computer Science and Engineering, Information communication technology (ICT) • Undergraduate and Postgraduate students of Mathematics. • Undergraduate and Postgraduate students of Computer Applications.
This book provides a unique and unusual introduction to graph theory by one of the founding fathers, and will be of interest to all researchers in the subject. It is not intended as a comprehensive treatise, but rather as an account of those parts of the theory that have been of special interest to the author. Professor Tutte details his experience in the area, and provides a fascinating insight into how he was led to his theorems and the proofs he used. As well as being of historical interest it provides a useful starting point for research, with references to further suggested books as well as the original papers. The book starts by detailing the first problems worked on by Professor Tutte and his colleagues during his days as an undergraduate member of the Trinity Mathematical Society in Cambridge. It covers subjects such as comnbinatorial problems in chess, the algebraicization of graph theory, reconstruction of graphs, and the chromatic eigenvalues. In each case fascinating historical and biographical information about the author's research is provided.
This books gives an introduction to discrete mathematics for beginning undergraduates. One of original features of this book is that it begins with a presentation of the rules of logic as used in mathematics. Many examples of formal and informal proofs are given. With this logical framework firmly in place, the book describes the major axioms of set theory and introduces the natural numbers. The rest of the book is more standard. It deals with functions and relations, directed and undirected graphs, and an introduction to combinatorics. There is a section on public key cryptography and RSA, with complete proofs of Fermat's little theorem and the correctness of the RSA scheme, as well as explicit algorithms to perform modular arithmetic. The last chapter provides more graph theory. Eulerian and Hamiltonian cycles are discussed. Then, we study flows and tensions and state and prove the max flow min-cut theorem. We also discuss matchings, covering, bipartite graphs.
This text has been designed as a complete introduction to discrete mathematics, primarily for computer science majors in either a one or two semester course. The topics addressed are of genuine use in computer science, and are presented in a logically coherent fashion. The material has been organized and interrelated to minimize the mass of definitions and the abstraction of some of the theory. For example, relations and directed graphs are treated as two aspects of the same mathematical idea. Whenever possible each new idea uses previously encountered material, and then developed in such a way that it simplifies the more complex ideas that follow.
Aimed at "the mathematically traumatized," this text offers nontechnical coverage of graph theory, with exercises. Discusses planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. 1976 edition.
Algorithmic Graph Theory and Perfect Graphs provides an introduction to graph theory through practical problems. This book presents the mathematical and algorithmic properties of special classes of perfect graphs. Organized into 12 chapters, this book begins with an overview of the graph theoretic notions and the algorithmic design. This text then examines the complexity analysis of computer algorithm and explains the differences between computability and computational complexity. Other chapters consider the parameters and properties of a perfect graph and explore the class of perfect graphs known as comparability graph or transitively orientable graphs. This book discusses as well the two characterizations of triangulated graphs, one algorithmic and the other graph theoretic. The final chapter deals with the method of performing Gaussian elimination on a sparse matrix wherein an arbitrary choice of pivots may result in the filling of some zero positions with nonzeros. This book is a valuable resource for mathematicians and computer scientists.
Note: This is the 3rd edition. If you need the 2nd edition for a course you are taking, it can be found as a "other format" on amazon, or by searching its isbn: 1534970746 This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 470 exercises, including 275 with solutions and over 100 with hints. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions. This third edition brings improved exposition, a new section on trees, and a bunch of new and improved exercises. For a complete list of changes, and to view the free electronic version of the text, visit the book's website at discrete.openmathbooks.org