Download Free Discrete Fuzzy Measures Book in PDF and EPUB Free Download. You can read online Discrete Fuzzy Measures and write the review.

This book addresses computer scientists, IT specialists, mathematicians, knowledge engineers and programmers, who are engaged in research and practice of multicriteria decision making. Fuzzy measures, also known as capacities, allow one to combine degrees of preferences, support or fuzzy memberships into one representative value, taking into account interactions between the inputs. The notions of mutual reinforcement or redundancy are modeled explicitly through coefficients of fuzzy measures, and fuzzy integrals, such as the Choquet and Sugeno integrals combine the inputs. Building on previous monographs published by the authors and dealing with different aspects of aggregation, this book especially focuses on the Choquet and Sugeno integrals. It presents a number of new findings concerning computation of fuzzy measures, learning them from data and modeling interactions. The book does not require substantial mathematical background, as all the relevant notions are explained. It is intended as concise, timely and self-contained guide to the use of fuzzy measures in the field of multicriteria decision making.
Concepts similar to fuzzy measure have been introduced independently in many domains: in non-expected utility theory, cooperative game theory, complexity analysis, measure theory, etc. This book reflects all these facets. It gathers survey papers written by leading researchers in the field, covering a selection of most significant topics. The first part is devoted to fundamental and theoretical material, while the second part deals with more applied topics such as decision making and pattern recognition. The book is of interest to researchers in decision making, artificial intelligence, applied mathematics, mathematical social sciences, etc.
Initially conceived as a methodology for the representation and manipulation of imprecise and vague information, fuzzy computation has found wide use in problems that fall well beyond its originally intended scope of application. Many scientists and engineers now use the paradigms of fuzzy computation to tackle problems that are either intractable
This book covers the underlying science and application issues related to aggregation operators, focusing on tools used in practical applications that involve numerical information. It will thus be required reading for engineers, statisticians and computer scientists of all kinds. Starting with detailed introductions to information fusion and integration, measurement and probability theory, fuzzy sets, and functional equations, the authors then cover numerous topics in detail, including the synthesis of judgements, fuzzy measures, weighted means and fuzzy integrals.
Mathematics of Fuzzy Sets: Logic, Topology and Measure Theory is a major attempt to provide much-needed coherence for the mathematics of fuzzy sets. Much of this book is new material required to standardize this mathematics, making this volume a reference tool with broad appeal as well as a platform for future research. Fourteen chapters are organized into three parts: mathematical logic and foundations (Chapters 1-2), general topology (Chapters 3-10), and measure and probability theory (Chapters 11-14). Chapter 1 deals with non-classical logics and their syntactic and semantic foundations. Chapter 2 details the lattice-theoretic foundations of image and preimage powerset operators. Chapters 3 and 4 lay down the axiomatic and categorical foundations of general topology using lattice-valued mappings as a fundamental tool. Chapter 3 focuses on the fixed-basis case, including a convergence theory demonstrating the utility of the underlying axioms. Chapter 4 focuses on the more general variable-basis case, providing a categorical unification of locales, fixed-basis topological spaces, and variable-basis compactifications. Chapter 5 relates lattice-valued topologies to probabilistic topological spaces and fuzzy neighborhood spaces. Chapter 6 investigates the important role of separation axioms in lattice-valued topology from the perspective of space embedding and mapping extension problems, while Chapter 7 examines separation axioms from the perspective of Stone-Cech-compactification and Stone-representation theorems. Chapters 8 and 9 introduce the most important concepts and properties of uniformities, including the covering and entourage approaches and the basic theory of precompact or complete [0,1]-valued uniform spaces. Chapter 10 sets out the algebraic, topological, and uniform structures of the fundamentally important fuzzy real line and fuzzy unit interval. Chapter 11 lays the foundations of generalized measure theory and representation by Markov kernels. Chapter 12 develops the important theory of conditioning operators with applications to measure-free conditioning. Chapter 13 presents elements of pseudo-analysis with applications to the Hamilton–Jacobi equation and optimization problems. Chapter 14 surveys briefly the fundamentals of fuzzy random variables which are [0,1]-valued interpretations of random sets.
1. The increasing number of research papers appeared in the last years that either make use of aggregation functions or contribute to its theoretieal study asses its growing importance in the field of Fuzzy Logie and in others where uncertainty and imprecision play a relevant role. Since these papers are pub lished in many journals, few books and several proceedings of conferences, books on aggregation are partieularly welcome. To my knowledge, "Agrega tion Operators. New Trends and Applications" is the first book aiming at generality , and I take it as a honour to write this Foreword in response to the gentle demand of its editors, Radko Mesiar, Tomasa Calvo and Gaspar Mayor. My pleasure also derives from the fact that twenty years aga I was one of the first Spaniards interested in the study of aggregation functions, and this book includes work by several Spanish authors. The book contains nice and relevant original papers, authored by some of the most outstanding researchers in the field, and since it can serve, as the editors point out in the Preface, as a small handbook on aggregation, the book is very useful for those entering the subject for the first time. The book also contains apart dealing with potential areas of application, so it can be helpful in gaining insight on the future developments.
This book provides a comprehensive and timely report in the area of non-additive measures and integrals. It is based on a panel session on fuzzy measures, fuzzy integrals and aggregation operators held during the 9th International Conference on Modeling Decisions for Artificial Intelligence (MDAI 2012) in Girona, Spain, November 21-23, 2012. The book complements the MDAI 2012 proceedings book, published in Lecture Notes in Computer Science (LNCS) in 2012. The individual chapters, written by key researchers in the field, cover fundamental concepts and important definitions (e.g. the Sugeno integral, definition of entropy for non-additive measures) as well some important applications (e.g. to economics and game theory) of non-additive measures and integrals. The book addresses students, researchers and practitioners working at the forefront of their field.
This book is the outcome of about eight years of work performed by the author largely in the field of intuitionistic fuzzy set theory and more in depth on intuitionistic fuzzy measures presented from a point of view characteristic for pure mathematics. The purpose of the book is to present a continuation of studies conducted focusing mainly on measures that evaluate intuitionistic fuzzy sets by real values and crisp sets by intuitionistic fuzzy values.
Counting is one of the basic elementary mathematical activities. It comes with two complementary aspects: to determine the number of elements of a set - and to create an ordering between the objects of counting just by counting them over. For finite sets of objects these two aspects are realized by the same type of num bers: the natural numbers. That these complementary aspects of the counting pro cess may need different kinds of numbers becomes apparent if one extends the process of counting to infinite sets. As general tools to determine numbers of elements the cardinals have been created in set theory, and set theorists have in parallel created the ordinals to count over any set of objects. For both types of numbers it is not only counting they are used for, it is also the strongly related process of calculation - especially addition and, derived from it, multiplication and even exponentiation - which is based upon these numbers. For fuzzy sets the idea of counting, in both aspects, looses its naive foundation: because it is to a large extent founded upon of the idea that there is a clear distinc tion between those objects which have to be counted - and those ones which have to be neglected for the particular counting process.