Download Free Discrete Functions Book in PDF and EPUB Free Download. You can read online Discrete Functions and write the review.

Representations of Discrete Functions is an edited volume containing 13 chapter contributions from leading researchers with a focus on the latest research results. The first three chapters are introductions and contain many illustrations to clarify concepts presented in the text. It is recommended that these chapters are read first. The book then deals with the following topics: binary decision diagrams (BDDs), multi-terminal binary decision diagrams (MTBDDs), edge-valued binary decision diagrams (EVBDDs), functional decision diagrams (FDDs), Kronecker decision diagrams (KDDs), binary moment diagrams (BMDs), spectral transform decision diagrams (STDDs), ternary decision diagrams (TDDs), spectral transformation of logic functions, other transformations oflogic functions, EXOR-based two-level expressions, FPRM minimization with TDDs and MTBDDs, complexity theories on FDDs, multi-level logic synthesis, and complexity of three-level logic networks. Representations of Discrete Functions is designed for CAD researchers and engineers and will also be of interest to computer scientists who are interested in combinatorial problems. Exercises prepared by the editors help make this book useful as a graduate level textbook.
Note: This is a custom edition of Levin's full Discrete Mathematics text, arranged specifically for use in a discrete math course for future elementary and middle school teachers. (It is NOT a new and updated edition of the main text.)This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this.Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs.While there are many fine discrete math textbooks available, this text has the following advantages: - It is written to be used in an inquiry rich course.- It is written to be used in a course for future math teachers.- It is open source, with low cost print editions and free electronic editions.
Discrete Convex Analysis is a novel paradigm for discrete optimization that combines the ideas in continuous optimization (convex analysis) and combinatorial optimization (matroid/submodular function theory) to establish a unified theoretical framework for nonlinear discrete optimization. The study of this theory is expanding with the development of efficient algorithms and applications to a number of diverse disciplines like matrix theory, operations research, and economics. This self-contained book is designed to provide a novel insight into optimization on discrete structures and should reveal unexpected links among different disciplines. It is the first and only English-language monograph on the theory and applications of discrete convex analysis.
This books gives an introduction to discrete mathematics for beginning undergraduates. One of original features of this book is that it begins with a presentation of the rules of logic as used in mathematics. Many examples of formal and informal proofs are given. With this logical framework firmly in place, the book describes the major axioms of set theory and introduces the natural numbers. The rest of the book is more standard. It deals with functions and relations, directed and undirected graphs, and an introduction to combinatorics. There is a section on public key cryptography and RSA, with complete proofs of Fermat's little theorem and the correctness of the RSA scheme, as well as explicit algorithms to perform modular arithmetic. The last chapter provides more graph theory. Eulerian and Hamiltonian cycles are discussed. Then, we study flows and tensions and state and prove the max flow min-cut theorem. We also discuss matchings, covering, bipartite graphs.
One of the chief aims of this self-contained monograph is to survey recent developments of Boolean functions and equations, as well as lattice functions and equations in more general classes of lattices. Lattice (Boolean) functions are algebraic functions defined over an arbitrary lattice (Boolean algebra), while lattice (Boolean) equations are equations expressed in terms of lattice (Boolean) functions. Special attention is also paid to consistency conditions and reproductive general solutions. Applications refer to graph theory, automata theory, synthesis of circuits, fault detection, databases, marketing and others. Lattice Functions and Equations updates and extends the author's previous monograph - Boolean Functions and Equations.
Representations of Discrete Functions is an edited volume containing 13 chapter contributions from leading researchers with a focus on the latest research results. The first three chapters are introductions and contain many illustrations to clarify concepts presented in the text. It is recommended that these chapters are read first. The book then deals with the following topics: binary decision diagrams (BDDs), multi-terminal binary decision diagrams (MTBDDs), edge-valued binary decision diagrams (EVBDDs), functional decision diagrams (FDDs), Kronecker decision diagrams (KDDs), binary moment diagrams (BMDs), spectral transform decision diagrams (STDDs), ternary decision diagrams (TDDs), spectral transformation of logic functions, other transformations oflogic functions, EXOR-based two-level expressions, FPRM minimization with TDDs and MTBDDs, complexity theories on FDDs, multi-level logic synthesis, and complexity of three-level logic networks. Representations of Discrete Functions is designed for CAD researchers and engineers and will also be of interest to computer scientists who are interested in combinatorial problems. Exercises prepared by the editors help make this book useful as a graduate level textbook.
There is a strong case for electrical network topologists and submodular function theorists being aware of each other's fields. Presenting a topological approach to electrical network theory, this book demonstrates the strong links that exist between submodular functions and electrical networks. The book contains: . a detailed discussion of graphs, matroids, vector spaces and the algebra of generalized minors, relevant to network analysis (particularly to the construction of efficient circuit simulators) . a detailed discussion of submodular function theory in its own right; topics covered include, various operations, dualization, convolution and Dilworth truncation as well as the related notions of prinicpal partition and principal lattice of partitions. In order to make the book useful to a wide audience, the material on electrical networks and that on submodular functions is presented independently of each other. The hybrid rank problem, the bridge between (topological) electrical network theory and submodular functions, is covered in the final chapter. The emphasis in the book is on low complexity algorithms, particularly based on bipartite graphs. The book is intended for self-study and is recommended to designers of VLSI algorithms. More than 300 problems, almost all of them with solutions, are included at the end of each chapter.
This volume collects the extended abstracts of 45 contributions of participants to the Seventh International Summer School on Aggregation Operators (AGOP 2013), held at Pamplona in July, 16-20, 2013. These contributions cover a very broad range, from the purely theoretical ones to those with a more applied focus. Moreover, the summaries of the plenary talks and tutorials given at the same workshop are included. Together they provide a good overview of recent trends in research in aggregation functions which can be of interest to both researchers in Physics or Mathematics working on the theoretical basis of aggregation functions, and to engineers who require them for applications.
The Distributed and Unified Numerics Environment (Dune) is a set of open-source C++ libraries for the implementation of finite element and finite volume methods. Over the last 15 years it has become one of the most commonly used libraries for the implementation of new, efficient simulation methods in science and engineering. Describing the main Dune libraries in detail, this book covers access to core features like grids, shape functions, and linear algebra, but also higher-level topics like function space bases and assemblers. It includes extensive information on programmer interfaces, together with a wealth of completed examples that illustrate how these interfaces are used in practice. After having read the book, readers will be prepared to write their own advanced finite element simulators, tapping the power of Dune to do so.
This concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms. More than 200 exercises, many with complete solutions. 1991 edition.