Download Free Discrete And System Models Book in PDF and EPUB Free Download. You can read online Discrete And System Models and write the review.

Stochastic discrete-event systems (SDES) capture the randomness in choices due to activity delays and the probabilities of decisions. This book delivers a comprehensive overview on modeling with a quantitative evaluation of SDES. It presents an abstract model class for SDES as a pivotal unifying result and details important model classes. The book also includes nontrivial examples to explain real-world applications of SDES.
Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on DES-M&S in which all the major DES modeling formalisms – activity-based, process-oriented, state-based, and event-based – are covered in a unified manner: A well-defined procedure for building a formal model in the form of event graph, ACD, or state graph Diverse types of modeling templates and examples that can be used as building blocks for a complex, real-life model A systematic, easy-to-follow procedure combined with sample C# codes for developing simulators in various modeling formalisms Simple tutorials as well as sample model files for using popular off-the-shelf simulators such as SIGMA®, ACE®, and Arena® Up-to-date research results as well as research issues and directions in DES-M&S Modeling and Simulation of Discrete-Event Systems is an ideal textbook for undergraduate and graduate students of simulation/industrial engineering and computer science, as well as for simulation practitioners and researchers.
The field of discrete event systems has emerged to provide a formal treatment of many of the man-made systems such as manufacturing systems, communica tion networks. automated traffic systems, database management systems, and computer systems that are event-driven, highly complex, and not amenable to the classical treatments based on differential or difference equations. Discrete event systems is a growing field that utilizes many interesting mathematical models and techniques. In this book we focus on a high level treatment of discrete event systems. where the order of events. rather than their occurrence times, is the principal concern. Such treatment is needed to guarantee that the system under study meets desired logical goals. In this framework, dis crete event systems are modeled by formal languages or, equivalently, by state machines. The field of logical discrete event systems is an interdisciplinary field-it in cludes ideas from computer science, control theory, and operations research. Our goal is to bring together in one book the relevant techniques from these fields. This is the first book of this kind, and our hope is that it will be useful to professionals in the area of discrete event systems since most of the material presented has appeared previously only in journals. The book is also designed for a graduate level course on logical discrete event systems. It contains all the necessary background material in formal language theory and lattice the ory. The only prerequisite is some degree of "mathematical maturity".
Most queuing analyses performed in the literature are based on characterization of queueing phenomena in continuous-time items. Recently in the telecommunication industries, BISDN (broadband integrated services digital network) has received considerable attention since it can provide a common interface for future communication needs including video, data, and speech. Since information in BISDN is transported by means of dicsrete units of 53-octet ATM (asynchronous transfer mode) cells, interests in discrete-time systems have increased. Discrete-Time Models for Communication Systems Including ATM provides a general framework for queueing analyses of dicrete-time systems. After a brief look at past studies of discrete-time systems, a detailed description and analysis are presented for a generic discrete-time model with a single server, arbitrary service times and independent arrivals. The book then follows a less stringent approach and focuses more on the average statistics and on different queueing disciplines. Conventional first-in-out and last-in-first-out disciplines are discussed in terms of the average statistics. Systems with multiple classes of messages without class-dependent priorities are considered to establish a discrete-time conservation law. Multiple classes with priorities are also considered to derive performance measures of priority scheduling disciplines. Finally, a multi-queue system with cyclic service is analyzed in the context of round-robin service ordering. This is followed by analyses of discrete-time queueing systems with `more complicate' input and output processes. Specifically, single-server systems are investigated whereby either the arrivals or the server is subject to random interruptions. Results are mainly obtained in terms of generating functions and mean values of the principal performance measures. The influence of the nature of the arrival correlation and the server interruptions on the queueing behavior is discussed. Finally, the book explores queueing models directly associated with ATM switches and multiplexers. This book is a valuable reference and may be used as a text for and advanced course on the subject.
Discrete-event dynamic systems (DEDs) permeate our world. They are of great importance in modern manufacturing processes, transportation and various forms of computer and communications networking. This book begins with the mathematical basics required for the study of DEDs and moves on to present various tools used in their modeling and control. Industrial examples illustrate the concepts and methods discussed, making this book an invaluable aid for students embarking on further courses in control, manufacturing engineering or computer studies.
Offers an integrated presentation for path planning and motion control of cooperative mobile robots using discrete-event system principles Generating feasible paths or routes between a given starting position and a goal or target position—while avoiding obstacles—is a common issue for all mobile robots. This book formulates the problem of path planning of cooperative mobile robots by using the paradigm of discrete-event systems. It presents everything readers need to know about discrete event system models—mainly Finite State Automata (FSA) and Petri Nets (PN)—and methods for centralized path planning and control of teams of identical mobile robots. Path Planning of Cooperative Mobile Robots Using Discrete Event Models begins with a brief definition of the Path Planning and Motion Control problems and their state of the art. It then presents different types of discrete models such as FSA and PNs. The RMTool MATLAB toolbox is described thereafter, for readers who will need it to provide numerical experiments in the last section. The book also discusses cell decomposition approaches and shows how the divided environment can be translated into an FSA by assigning to each cell a discrete state, while the adjacent relation together with the robot's dynamics implies the discrete transitions. Highlighting the benefits of Boolean Logic, Linear Temporal Logic, cell decomposition, Finite State Automata modeling, and Petri Nets, this book also: Synthesizes automatic strategies based on Discrete Event Systems (DES) for path planning and motion control and offers software implementations for the involved algorithms Provides a tutorial for motion planning introductory courses or related simulation-based projects using a MATLAB package called RMTool (Robot Motion Toolbox) Includes simulations for problems solved by methodologies presented in the book Path Planning of Cooperative Mobile Robots Using Discrete Event Models is an ideal book for undergraduate and graduate students and college and university professors in the areas of robotics, artificial intelligence, systems modeling, and autonomous control.
Collecting the work of the foremost scientists in the field, Discrete-Event Modeling and Simulation: Theory and Applications presents the state of the art in modeling discrete-event systems using the discrete-event system specification (DEVS) approach. It introduces the latest advances, recent extensions of formal techniques, and real-world examples of various applications. The book covers many topics that pertain to several layers of the modeling and simulation architecture. It discusses DEVS model development support and the interaction of DEVS with other methodologies. It describes different forms of simulation supported by DEVS, the use of real-time DEVS simulation, the relationship between DEVS and graph transformation, the influence of DEVS variants on simulation performance, and interoperability and composability with emphasis on DEVS standardization. The text also examines extensions to DEVS, new formalisms, and abstractions of DEVS models as well as the theory and analysis behind real-world system identification and control. To support the generation and search of optimal models of a system, a framework is developed based on the system entity structure and its transformation to DEVS simulation models. In addition, the book explores numerous interesting examples that illustrate the use of DEVS to build successful applications, including optical network-on-chip, construction/building design, process control, workflow systems, and environmental models. A one-stop resource on advances in DEVS theory, applications, and methodology, this volume offers a sampling of the best research in the area, a broad picture of the DEVS landscape, and trend-setting applications enabled by the DEVS approach. It provides the basis for future research discoveries and encourages the development of new applications.
Introduction to Discrete Event Systems is a comprehensive introduction to the field of discrete event systems, offering a breadth of coverage that makes the material accessible to readers of varied backgrounds. The book emphasizes a unified modeling framework that transcends specific application areas, linking the following topics in a coherent manner: language and automata theory, supervisory control, Petri net theory, Markov chains and queuing theory, discrete-event simulation, and concurrent estimation techniques. This edition includes recent research results pertaining to the diagnosis of discrete event systems, decentralized supervisory control, and interval-based timed automata and hybrid automata models.
This book provides an introduction to the analysis of discrete dynamical systems. The content is presented by an unitary approach that blends the perspective of mathematical modeling together with the ones of several discipline as Mathematical Analysis, Linear Algebra, Numerical Analysis, Systems Theory and Probability. After a preliminary discussion of several models, the main tools for the study of linear and non-linear scalar dynamical systems are presented, paying particular attention to the stability analysis. Linear difference equations are studied in detail and an elementary introduction of Z and Discrete Fourier Transform is presented. A whole chapter is devoted to the study of bifurcations and chaotic dynamics. One-step vector-valued dynamical systems are the subject of three chapters, where the reader can find the applications to positive systems, Markov chains, networks and search engines. The book is addressed mainly to students in Mathematics, Engineering, Physics, Chemistry, Biology and Economics. The exposition is self-contained: some appendices present prerequisites, algorithms and suggestions for computer simulations. The analysis of several examples is enriched by the proposition of many related exercises of increasing difficulty; in the last chapter the detailed solution is given for most of them.
Discrete event simulation and agent-based modeling are increasingly recognized as critical for diagnosing and solving process issues in complex systems. Introduction to Discrete Event Simulation and Agent-based Modeling covers the techniques needed for success in all phases of simulation projects. These include: • Definition – The reader will learn how to plan a project and communicate using a charter. • Input analysis – The reader will discover how to determine defensible sample sizes for all needed data collections. They will also learn how to fit distributions to that data. • Simulation – The reader will understand how simulation controllers work, the Monte Carlo (MC) theory behind them, modern verification and validation, and ways to speed up simulation using variation reduction techniques and other methods. • Output analysis – The reader will be able to establish simultaneous intervals on key responses and apply selection and ranking, design of experiments (DOE), and black box optimization to develop defensible improvement recommendations. • Decision support – Methods to inspire creative alternatives are presented, including lean production. Also, over one hundred solved problems are provided and two full case studies, including one on voting machines that received international attention. Introduction to Discrete Event Simulation and Agent-based Modeling demonstrates how simulation can facilitate improvements on the job and in local communities. It allows readers to competently apply technology considered key in many industries and branches of government. It is suitable for undergraduate and graduate students, as well as researchers and other professionals.