Download Free Discovery Of Localized Tev Gamma Ray Sources And Diffuse Tev Gamma Ray Emission From The Galactic Plane With Milagro Using A New Background Rejection Technique Book in PDF and EPUB Free Download. You can read online Discovery Of Localized Tev Gamma Ray Sources And Diffuse Tev Gamma Ray Emission From The Galactic Plane With Milagro Using A New Background Rejection Technique and write the review.

The GLAST Symposia provide a forum for the exchange of information across a broad range of scientific investigations. GLAST, NASA's new gamma-ray observatory, opens a new window into the universe. GLAST data will enable scientists to answer questions that arise within a broad range of topics, including super massive black hole systems, pulsars, gamma-ray bursts, the origin of cosmic rays, and searches for signals of new physics.
The Milagro gamma-ray observatory is a water Cherenkov detector with an energy response between 100 GeV and 100 TeV. While the major scientific goals of Milagro were to detect and study cosmic sources of TeV gamma rays, Milagro has made measurements important to furthering our understanding of the cosmic radiation that pervades our Galaxy. Milagro has made the first measurement of the Galactic diffuse emission in the TeV energy band. In the Cygnus Region we measure a flux ≈2.7 times that predicted by GALPROP. Milagro has also made measurements of the anisotropy of the arrival directions of the local cosmic radiation. On large scales the measurements made by Milagro agree with those previously reported by the Tibet AS[gamma] array. However, we have also discovered a time dependence to this anisotropy, perhaps due to solar modulation. On smaller scales, ≈10 degrees, we have detected two regions of excess. These excesses have a spectrum that is inconsistent with the local cosmic-ray spectrum.
As neutrally-charged astrophysical messengers, gamma rays serve as powerful tools for determining the origins of incredibly high-energy particles from across our universe [1]. Gamma rays are considered to have the highest energy of all electromagnetic radiation, with energies spanning from 0.5 MeV to about 100 TeV [2]. Although lower-energy gamma rays can originate from within our solar system, gamma rays in the GeV and TeV ranges tend to originate from sources beyond our solar system [1]. By investigating these sources, we can understand more about the astrophysical phenomena that characterize the most extreme conditions in our universe, such as supernova remnants, gamma-ray bursts, and pulsars [3]. The High Altitude Water Cherenkov Gamma-Ray Observatory (HAWC) is one of the most sensitive gamma-ray detectors in the very high energy (VHE) regime, with the capability to observe gamma rays from 100 GeV and 100 TeV [4]. In 2017, HAWC conducted a blind search encompassing two thirds of the sky and 508 days of observations [4]. In this search, there were 16 VHE gamma-ray excesses that were unassociated with any previously discovered gamma-ray sources [4]. Now with data from 1523 days of observations, we begin to study these 16 unassociated candidate TeV sources in more detail. In this work, we update the locations of maximum significance for these candidate TeV sources and analyze the temporal progression of their significance and flux. This allows us to determine if they have faded into the diffuse gamma radiation or if they can still be considered unassociated candidate TeV sources. We then reevaluate the morphologies and spectral energy distributions of the remaining sources and discuss any recent observations from other gamma-ray observatories. We find that 10 of these 16 unassociated candidate TeV sources can still be considered candidate sources. In the future, we plan to use data from other observatories to continue to put better constrains on the morphology and spectral energy distributions for these sources and better understand their acceleration mechanisms. In addition, we plan to conduct a similar investigation with new HAWC excesses discovered with recent data from 1523 days of observations [5]. By investigating these excesses in the high-energy gamma-ray sky, we can discover and characterize new extreme astrophysical phenomena and ultimately uncover valuable information about the physical mechanisms that accelerate particles to very high energies.
The Milagro gamma-ray observatory, located near Los Alamos, NM, employs a water-Cherenkov technique to continuously monitor the northern sky for astrophysical gamma-ray emission near 1 TeV. Milagro's high duty-cycle ( -95%) and wide aperture ( -2 sr) allows for the detection of flaring behavior associated with TeV AGN, even during daytime transits. Results are presented from a search of the Milagro 2000-2001 data set for 'rev emission from selected AGN, including the bright fare of Mrk421 in early 2001.
This book introduces the reader to the field of nuclear astrophysics, i.e. the acquisition and reading of measurements on unstable isotopes in different parts of the universe. The authors explain the role of radioactivities in astrophysics, discuss specific sources of cosmic isotopes and in which special regions they can be observed. More specifically, the authors address stars of different types, stellar explosions which terminate stellar evolutions, and other explosions triggered by mass transfers and instabilities in binary stars. They also address nuclear reactions and transport processes in interstellar space, in the contexts of cosmic rays and of chemical evolution. A special chapter is dedicated to the solar system which even provides material samples. The book also contains a description of key tools which astrophysicists employ in those particular studies and a glossary of key terms in astronomy with radioactivities.
The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.
The Fermi Large Area Telescope (LAT) discovered a new gamma-ray source near the Galactic plane, Fermi J0109+6134, when it flared brightly in 2010 February. The low Galactic latitude (b = -1.2{sup o}) indicated that the source could be located within the Galaxy, which motivated rapid multi-wavelength follow-up including radio, optical, and X-ray observations. We report the results of analyzing all 19 months of LAT data for the source, and of X-ray observations with both Swift and the Chandra X-ray Observatory. We determined the source redshift, z = 0.783, using a Keck LRIS observation. Finally, we compiled a broadband spectral energy distribution (SED) from both historical and new observations contemporaneous with the 2010 February flare. The redshift, SED, optical line width, X-ray obsorption, and multi-band variability indicate that this new Gev source is a blazar seen through the Galactic plane. Because several of the optical emission lines have equivalent width> 5 Å, this blazar belongs in the flat-spectrum radio quasar category.