Download Free Discourses On Algebra Book in PDF and EPUB Free Download. You can read online Discourses On Algebra and write the review.

Using various examples this monograph shows that algebra is one of the most beautiful forms of mathematics. In doing so, it explains the basics of algebra, number theory, set theory and probability. The text presupposes very limited knowledge of mathematics, making it an ideal read for anybody new to the subject. The author, I.R. Shafarevich, is well-known across the world as one of the most outstanding mathematicians of this century as well as one of the most respected mathematical writers.
Using various examples this monograph shows that algebra is one of the most beautiful forms of mathematics. In doing so, it explains the basics of algebra, number theory, set theory and probability. The text presupposes very limited knowledge of mathematics, making it an ideal read for anybody new to the subject. The author, I.R. Shafarevich, is well-known across the world as one of the most outstanding mathematicians of this century as well as one of the most respected mathematical writers.
For historians of mathematics and those interested in the history of science, 'A Discourse Concerning Algebra' provides an new and readable account of the rise of algebra in England from the Medieval period to the later years of the 17th century. Including new research, this is the most detailed study to date of early modern English algebra, which builds on work published in 1685 by John Wallis (Savilian Professor of Geometry at Oxford) on the history of algebra. Stedall's book follows the reception and dissemination of important algebraic ideas and methods from continental Europe (especially those of Viéte) and the consequent revolution in the state of English mathematics in the 17th century. The text emphasises the contribution of Wallis, but substantial reference is also provided to other important mathematicans such as Harriot, Oughtred, Pell and Brouncker.
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
An examination of mathematical discourse from the perspective of Michael Halliday's social semiotic theory.
The book reports a comparative research project about algebra teaching and learning in four countries. Algebra is a central topic of learning across the world, and it is well-known that it represents a hurdle for many students. The book presents analyses built on extensive video-recordings of classrooms documenting the first introduction to symbolic algebra (students aged 12 to 14). While the content addressed in all classrooms is variables, expressions and equations, the teaching approaches are diverse. The chapters bring the reader into different algebra classrooms, discussing issues such as mathematization and social norms, the role of mediating tools and designed examples, and teacher beliefs. By comparing classrooms, new insights are generated about how students understand the algebraic content, how teachers instruct, and how both parties deal with difficulties in learning elementary algebra. The book also describes a research methodology using video in search of taken-for-granted aspects of algebra lessons.
This little treatise is written for the non-mathematician, and concerned with mathematical discourses which are central to all mathematical study. Unless a person has some familiarity with the concept of mathematical discourse, they are not prepared to understand even the rudiments of modern mathematics and its significance. An understanding of the subject of this book is essential to mathematical literacy.
The various chapters tell practical stories of equitable practices for diverse learners within a range of different contexts. Different research perspectives, empirical traditions, and conceptual foci are presented in each chapter. Various aspects of diversity are raised, issues of concern are engaged with, and at times conventional wisdom challenged as the authors provide insights as to how educators may address issues of equitable access of minoritized learners to the mathematical discourse within settings across early primary through to high school, and situated in schools or in family and community settings.
This book is an attempt to change our thinking about thinking. Anna Sfard undertakes this task convinced that many long-standing, seemingly irresolvable quandaries regarding human development originate in ambiguities of the existing discourses on thinking. Standing on the shoulders of Vygotsky and Wittgenstein, the author defines thinking as a form of communication. The disappearance of the time-honoured thinking-communicating dichotomy is epitomised by Sfard's term, commognition, which combines communication with cognition. The commognitive tenet implies that verbal communication with its distinctive property of recursive self-reference may be the primary source of humans' unique ability to accumulate the complexity of their action from one generation to another. The explanatory power of the commognitive framework and the manner in which it contributes to our understanding of human development is illustrated through commognitive analysis of mathematical discourse accompanied by vignettes from mathematics classrooms.