Download Free Disconjugacy And Oscillation Theory Of Linear Differential And Difference Equations Book in PDF and EPUB Free Download. You can read online Disconjugacy And Oscillation Theory Of Linear Differential And Difference Equations and write the review.

On becoming familiar with difference equations and their close re lation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations. [HUGH L. TURRITTIN, My Mathematical Expectations, Springer Lecture Notes 312 (page 10), 1973] A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both. [E. T. BELL, Men of Mathematics, Simon and Schuster, New York (page 13/14), 1937] The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. This book is an intro duction to the study of dynamic equations on time scales. Many results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice, once for differential equa tions and once for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which is an arbitrary nonempty closed subset of the reals.
This monograph contains an in-depth analysis of the dynamics given by a linear Hamiltonian system of general dimension with nonautonomous bounded and uniformly continuous coefficients, without other initial assumptions on time-recurrence. Particular attention is given to the oscillation properties of the solutions as well as to a spectral theory appropriate for such systems. The book contains extensions of results which are well known when the coefficients are autonomous or periodic, as well as in the nonautonomous two-dimensional case. However, a substantial part of the theory presented here is new even in those much simpler situations. The authors make systematic use of basic facts concerning Lagrange planes and symplectic matrices, and apply some fundamental methods of topological dynamics and ergodic theory. Among the tools used in the analysis, which include Lyapunov exponents, Weyl matrices, exponential dichotomy, and weak disconjugacy, a fundamental role is played by the rotation number for linear Hamiltonian systems of general dimension. The properties of all these objects form the basis for the study of several themes concerning linear-quadratic control problems, including the linear regulator property, the Kalman-Bucy filter, the infinite-horizon optimization problem, the nonautonomous version of the Yakubovich Frequency Theorem, and dissipativity in the Willems sense. The book will be useful for graduate students and researchers interested in nonautonomous differential equations; dynamical systems and ergodic theory; spectral theory of differential operators; and control theory.
This volume contains papers from the 7th International Conference on Difference Equations held at Hunan University (Changsa, China), a satellite conference of ICM2002 Beijing. The volume captures the spirit of the meeting and includes peer-reviewed survey papers, research papers, and open problems and conjectures. Articles cover stability, oscillation, chaos, symmetries, boundary value problems and bifurcations for discrete dynamical systems, difference-differential equations, and discretization of continuous systems. The book presents state-of-the-art research in these important areas. It is suitable for graduate students and researchers in difference equations and related topics.
Oscillation theory was born with Sturm's work in 1836. It has been flourishing for the past fifty years. Nowadays it is a full, self-contained discipline, turning more towards nonlinear and functional differential equations. Oscillation theory flows along two main streams. The first aims to study prop erties which are common to all linear differential equations. The other restricts its area of interest to certain families of equations and studies in maximal details phenomena which characterize only those equations. Among them we find third and fourth order equations, self adjoint equations, etc. Our work belongs to the second type and considers two term linear equations modeled after y(n) + p(x)y = O. More generally, we investigate LnY + p(x)y = 0, where Ln is a disconjugate operator and p(x) has a fixed sign. These equations enjoy a very rich structure and are the natural generalization of the Sturm-Liouville operator. Results about such equations are distributed over hundreds of research papers, many of them are reinvented again and again and the same phenomenon is frequently discussed from various points of view and different definitions of the authors. Our aim is to introduce an order into this plenty and arrange it in a unified and self contained way. The results are readapted and presented in a unified approach. In many cases completely new proofs are given and in no case is the original proof copied verbatim. Many new results are included.
This book summarizes the qualitative theory of differential equations with or without delays, collecting recent oscillation studies important to applications and further developments in mathematics, physics, engineering, and biology. The authors address oscillatory and nonoscillatory properties of first-order delay and neutral delay differential eq
This monograph is devoted to covering the main results in the qualitative theory of symplectic difference systems, including linear Hamiltonian difference systems and Sturm-Liouville difference equations, with the emphasis on the oscillation and spectral theory. As a pioneer monograph in this field it contains nowadays standard theory of symplectic systems, as well as the most current results in this field, which are based on the recently developed central object - the comparative index. The book contains numerous results and citations, which were till now scattered only in journal papers. The book also provides new applications of the theory of matrices in this field, in particular of the Moore-Penrose pseudoinverse matrices, orthogonal projectors, and symplectic matrix factorizations. Thus it brings this topic to the attention of researchers and students in pure as well as applied mathematics.
The Eighth International Conference on Difference Equations and Applications was held at Masaryk University in Brno, Czech Republic. This volume comprises refereed papers presented at this conference. Initially published in 2005.
This book is devoted to a rapidly developing branch of the qualitative theory of difference equations with or without delays. It presents the theory of oscillation of difference equations, exhibiting classical as well as very recent results in that area. While there are several books on difference equations and also on oscillation theory for ordinary differential equations, there is until now no book devoted solely to oscillation theory for difference equations. This book is filling the gap, and it can easily be used as an encyclopedia and reference tool for discrete oscillation theory. In nine chapters, the book covers a wide range of subjects, including oscillation theory for second-order linear difference equations, systems of difference equations, half-linear difference equations, nonlinear difference equations, neutral difference equations, delay difference equations, and differential equations with piecewise constant arguments. This book summarizes almost 300 recent research papers and hence covers all aspects of discrete oscillation theory that have been discussed in recent journal articles. The presented theory is illustrated with 121 examples throughout the book. Each chapter concludes with a section that is devoted to notes and bibliographical and historical remarks. The book is addressed to a wide audience of specialists such as mathematicians, engineers, biologists, and physicists. Besides serving as a reference tool for researchers in difference equations, this book can also be easily used as a textbook for undergraduate or graduate classes. It is written at a level easy to understand for college students who have had courses in calculus.