Download Free Direct Torque Control Strategies Of Electrical Machines Book in PDF and EPUB Free Download. You can read online Direct Torque Control Strategies Of Electrical Machines and write the review.

This book deals with the design and analysis of Direct Torque Control (DTC). It introduces readers to two major applications of electrical machines: speed drive and position control and gives the readers a comprehensive overview of the field of DTC dedicated to AC machines. It includes new DTC approaches with and without control of commutation frequency. It also covers DTC applications using artificial intelligence. The book combines theoretical analysis, simulation, and experimental concepts.To make the content as accessible as possible, the book employs a clear proposal in each chapter, moving from the background, to numerical development, and finally to case studies and illustrations. The book is a wide-ranging reference source for graduate students, researchers, and professors from related fields and it will benefit practicing engineers and experts from the industry.
Solving Transport Problems establishes fundamental points and good practice in resolving matters regarding green transportation. This is to prompt further research in conveyance issues by providing readers with new knowledge and grounds for integrated models and solution methods. Focusing on green transportation, this book covers various sub-topics and thus consists of diverse content. Traditionally, academia and transport practitioners have mainly concentrated on efficient fleet management to achieve economic benefits and better-quality service. More recently, due to growing public environmental concerns and the industry understanding of the issue, the academic community has started to address environmental issues. The studies of green transportation compiled in this book have identified certain areas of interest, such as references, viewpoints, algorithms and ideas. Solving Transport Problems is for researchers, environmental decision-makers and other concerned parties, to start discussion on developing optimized technology and alternative fuel-based integrated models for environmentally cleaner transport systems.
This is the first comprehensive book on sensorless high performance a.c. drives. It is essential reading for anyone interestred in acquiring a solid background on sensorless torque-controlled drives. It presents a detailed and unified treatment of sensorless vector-controlled and direct-torque controlled drive systems. It also discusses the applications of artificial intelligence to drives. Where possible, space vector theory is used and emphasis is laid on detailed mathematical and physical analysis. Sensorless drive schemes for different types of permanent magnet synchronous motors, synchronous reluctance motors, and induction motors are also presented. These include more than twenty vector drives e.g. five types of MRAS-based vector drives, and eleven types of direct-torque-controlled (DTC) drives, e.g. the ABB DTC drive. However, torque-controlled switched reluctance motor drives are also discussed due to their emerging importance. The book also covers various drive applications using artificial intelligence (fuzzy logic, neural networks, fuzzy-neural networks) and AI-based modelling of electrical machines. Finally, self-commissioning techniques are also discussed. This is a comprehensive thoroughly up-to-date, and self-contained book suitable for students at various levels, teachers, and industrial readership. Peter Vas is a Professor at the Department of Engineering at the University of Aberdeen, UK, where he is also the Head of the Intelligent Motion Control Group. His previous books published by Oxford University Press are extensively used worldwide.
With the growing interest in electrical machines in recent times, the multiphase machine field has developed into a fascinating research area. Their intrinsic features (power splitting, better fault tolerance, or lower torque ripple) make them an appealing competitor to conventional three-phase machines. Multiphase electric drives have been recently used in applications where fault tolerance and continuous operation of the drive are required. However, the difficulties in extending the three-phase conventional current regulation and control structure to multiphase systems still limit their broad applicability in industry solutions. The main objective of this book is to illustrate new advances, developments, and applications in the field of multiphase machines and drives, while exposing these advances, developments, and applications to the scientific community and industry.
This book is an introduction to the concepts and developments of emerging electric machines, including advances, perspectives, and selected applications. It is a helpful tool for practicing engineers concerned with emerging electric machines and their challenges and potential uses. Chapters cover such topics as electric machines with axial magnetic flux, asynchronous machines with dual power supply, new designs for electrical machines, and more.
A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material
Induction motors are the most important workhorses in industry. They are mostly used as constant-speed drives when fed from a voltage source of fixed frequency. Advent of advanced power electronic converters and powerful digital signal processors, however, has made possible the development of high performance, adjustable speed AC motor drives. This book aims to explore new areas of induction motor control based on artificial intelligence (AI) techniques in order to make the controller less sensitive to parameter changes. Selected AI techniques are applied for different induction motor control strategies. The book presents a practical computer simulation model of the induction motor that could be used for studying various induction motor drive operations. The control strategies explored include expert-system-based acceleration control, hybrid-fuzzy/PI two-stage control, neural-network-based direct self control, and genetic algorithm based extended Kalman filter for rotor speed estimation. There are also chapters on neural-network-based parameter estimation, genetic-algorithm-based optimized random PWM strategy, and experimental investigations. A chapter is provided as a primer for readers to get started with simulation studies on various AI techniques. Presents major artificial intelligence techniques to induction motor drives Uses a practical simulation approach to get interested readers started on drive development Authored by experienced scientists with over 20 years of experience in the field Provides numerous examples and the latest research results Simulation programs available from the book's Companion Website This book will be invaluable to graduate students and research engineers who specialize in electric motor drives, electric vehicles, and electric ship propulsion. Graduate students in intelligent control, applied electric motion, and energy, as well as engineers in industrial electronics, automation, and electrical transportation, will also find this book helpful. Simulation materials available for download at www.wiley.com/go/chanmotor
A unique approach to sensorless control and regulator design of electric drives Based on the author's vast industry experience and collaborative works with other industries, Control of Electric Machine Drive Systems is packed with tested, implemented, and verified ideas that engineers can apply to everyday problems in the field. Originally published in Korean as a textbook, this highly practical updated version features the latest information on the control of electric machines and apparatus, as well as a new chapter on sensorless control of AC machines, a topic not covered in any other publication. The book begins by explaining the features of the electric drive system and trends of development in related technologies, as well as the basic structure and operation principles of the electric machine. It also addresses steady state characteristics and control of the machines and the transformation of physical variables of AC machines using reference frame theory in order to provide a proper foundation for the material. The heart of the book reviews several control algorithms of electric machines and power converters, explaining active damping and how to regulate current, speed, and position in a feedback manner. Seung-Ki Sul introduces tricks to enhance the control performance of the electric machines, and the algorithm to detect the phase angle of an AC source and to control DC link voltages of power converters. Topics also covered are: Vector control Control algorithms for position/speed sensorless drive of AC machines Methods for identifying the parameters of electric machines and power converters The matrix algebra to model a three-phase AC machine in d-q-n axes Every chapter features exercise problems drawn from actual industry experience. The book also includes more than 300 figures and offers access to an FTP site, which provides MATLAB programs for selected problems. The book's practicality and realworld relatability make it an invaluable resource for professionals and engineers involved in the research and development of electric machine drive business, industrial drive designers, and senior undergraduate and graduate students. To obtain instructor materials please send an email to [email protected] To visit this book's FTP site to download MATLAB codes, please click on this link: ftp://ftp.wiley.com/public/sci_tech_med/electric_machine/ MATLAB codes are also downloadable from Wiley Booksupport Site at http://booksupport.wiley.com
Electric motors are the largest consumer of electric energy and they play a critical role in the growing market for electrification. Due to their simple construction, switched reluctance motors (SRMs) are exceptionally attractive for the industry to respond to the increasing demand for high-efficiency, high-performance, and low-cost electric motors with a more secure supply chain. Switched Reluctance Motor Drives: Fundamentals to Applications is a comprehensive textbook covering the major aspects of switched reluctance motor drives. It provides an overview of the use of electric motors in the industrial, residential, commercial, and transportation sectors. It explains the theory behind the operation of switched reluctance motors and provides models to analyze them. The book extensively concentrates on the fundamentals and applications of SRM design and covers various design details, such as materials, mechanical construction, and controls. Acoustic noise and vibration is the most well-known issue in switched reluctance motors, but this can be reduced significantly through a multidisciplinary approach. These methodologies are explained in two chapters of the book. The first covers the fundamentals of acoustic noise and vibration so readers have the necessary tools to analyze the problems and explains the surface waves, spring-mass models, forcing harmonics, and mode shapes that are utilized in modeling and analyzing acoustic noise and vibration. The second applies these fundamentals to switched reluctance motors and provides examples for determining the sources of any acoustic noise in switched reluctance motors. In the final chapter two SRM designs are presented and proposed as replacements for permanent magnet machines in a residential HVAC application and a hybrid-electric propulsion application. It also shows a high-power and compact converter design for SRM drives. Features: Comprehensive coverage of switched reluctance motor drives from fundamental principles to design, operation, and applications A specific chapter on electric motor usage in industrial, residential, commercial, and transportation applications to address the benefits of switched reluctance machines Two chapters address acoustic noise and vibration in detail Numerous illustrations and practical examples on the design, modeling, and analysis of switched reluctance motor drives Examples of switched reluctance motor and drive design
This is a reference source for practising engineers specializing in electric power engineering and industrial electronics. It begins with the basic dynamic models of induction motors and progresses to low- and high-performance drive systems.