Download Free Direct Photons From Relativistic Heavy Ion Collisions Book in PDF and EPUB Free Download. You can read online Direct Photons From Relativistic Heavy Ion Collisions and write the review.

In this work it is shown that the use of a hydrodynamical model of heavy-ion collisions which incorporates recent developments, together with updated photon emission rates, greatly improves agreement with both ALICE and PHENIX measurements of direct photons, supporting the idea that thermal photons are the dominant source of direct photon momentum anisotropy. The event-by-event hydrodynamical model uses the impact parameter dependent Glasma model (IP-Glasma) initial states and includes, for the first time, both shear and bulk viscosities, along with second-order couplings between the two viscosities. Furthermore, the effect of both shear and bulk viscosities on the photon rates is studied, and those transport coefficients are shown to have measurable consequences on the photon momentum anisotropy.
Measurement of neutral pions and direct photons are closely connected experimentally, on the other hand they probe quite different aspects of relativistic heavy ion collisions. In this short review of the [pi]° results from the PHENIX experiment at RHIC our focus is on the [phi]-integrated nuclear modification factor, its energy and system size dependence, and the impact of these results on parton energy loss models. We also discuss the current status of high p{sub T} and thermal direct photon measurements both in p+p and Au+Au collisions. Recognizing the advantages of measuring not only the 'signal', but also all the 'references' needed for proper interpretation in the same experiments (with same or similar systematics) we argue that RHIC should regularly include d+A and even d+d collisions into its system size and energy scan.
This book attempts to cover the fascinating field of physics of relativistic heavy ions, mainly from the experimentalist's point of view. After the introductory chapter on quantum chromodynamics, basic properties of atomic nuclei, sources of relativistic nuclei, and typical detector set-ups are described in three subsequent chapters. Experimental facts on collisions of relativistic heavy ions are systematically presented in 15 consecutive chapters, starting from the simplest features like cross sections, multiplicities, and spectra of secondary particles and going to more involved characteristics like correlations, various relatively rare processes, and newly discovered features: collective flow, high pT suppression and jet quenching. Some entirely new topics are included, such as the difference between neutron and proton radii in nuclei, heavy hypernuclei, and electromagnetic effects on secondary particle spectra.Phenomenological approaches and related simple models are discussed in parallel with the presentation of experimental data. Near the end of the book, recent ideas about the new state of matter created in collisions of ultrarelativistic nuclei are discussed. In the final chapter, some predictions are given for nuclear collisions in the Large Hadron Collider (LHC), now in construction at the site of the European Organization for Nuclear Research (CERN), Geneva. Finally, the appendix gives us basic notions of relativistic kinematics, and lists the main international conferences related to this field. A concise reference book on physics of relativistic heavy ions, it shows the present status of this field.
Direct photons are ideal tools to investigate kinematical and thermodynamical conditions of heavy ion collisions since they are emitted from all stages of the collision and once produced they leave the interaction region without further modification by the medium. The PHENIX experiment at RHIC has measured direct photon production in p+p and Au+Au collisions at 200 GeV over a wide transverse momentum (p{sub T}) range. The p+p measurements allow a fundamental test of QCD, and serve as a baseline when we try to disentangle more complex mechanisms producing high p{sub T} direct photons in Au+Au. As for thermal photons in Au+Au we overcome the difficulties due to the large background from hadronic decays by measuring 'almost real' virtual photons which appear as low invariant mass ee− pairs: a significant excess of direct photons is measured above the above next-to-leading order perturbative quantum chromodynamics calculations. Additional insights on the origin of direct photons can be gained with the study of the azimuthal anisotropy which benefits from the increased statistics and reaction plane resolution achieved in RHIC Year-7 data.
Papers of the June 1989 meeting in Beijing by the China Center of Advanced Science and Technology. This small book covers nucleus- nucleus collisions, states of the vacuum, and highly relativistic heavy ions in the experimental realm. Theoretical papers deal with quark-gluon plasma, and relativistic heavy ion collisions. Annotation copyrighted by Book News, Inc., Portland, OR
The recent results on direct photons and dileptons in high energy heavy ion collisions, obtained particularly at RHIC and LHC are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the physics learned from the results.