Download Free Direct Detection Of Galactic Halo Dark Matter Book in PDF and EPUB Free Download. You can read online Direct Detection Of Galactic Halo Dark Matter and write the review.

"The Milky Way galaxy contains a large, spherical component which is believed to harbor a substantial amount of unseen matter. Recent observations indirectly suggest that as much as half of this "dark matter" may be in the form of old, very cool white dwarfs, the remnants of an ancient population of stars as old as the galaxy itself. We conducted a survey to find faint, cool white dwarfs with large space velocities, indicative of their membership in the galaxy's spherical halo component. The survey reveals a substantial, directly observed population of old white dwarfs, too faint to be seen in previous surveys. This newly discovered population accounts for at least 2 percent of the halo dark matter. It provides a natural explanation for the indirect observations, and represents a direct detection of galactic halo dark matter."
The objective of the workshop series “The Identification of Dark Matter” is to assess critically the status of work attempting to identify what constitutes dark matter; in particular, to consider what techniques are currently being used, how successful they are, and what new techniques are likely to improve the prospects for identifying dark matter candidates in the future. This proceedings volume includes reviews on major particle astrophysics topics in the field of dark matter, as well as short contributed papers.
These proceedings provide the latest results on dark matter and dark energy research. The UCLA Department of Physics and Astronomy hosted its tenth Dark Matter and Dark Energy conference in Marina del Rey and brought together all the leaders in the field. The symposium provided a scientific forum for the latest discussions in the field. Topics covered at the symposium: •Status of measurements of the equation of state of dark energy and new experiments •The search for missing energy events at the LHC and implications for dark matter search •Theoretical calculations on all forms of dark matter (SUSY, axions, sterile neutrinos, etc.) •Status of the indirect search for dark matter •Status of the direct search for dark matter in detectors around the world •The low-mass wimp search region •The next generation of very large dark matter detectors •New underground laboratories for dark matter search
The prestigious Identification of Dark Matter workshop series was initiated to assess the status of work that attempts to identify the constitution of dark matter. In particular, it aims to review the success of current methods that are used in the search for dark matter, as well as the new techniques that are likely to improve prospects for detecting possible dark matter candidates in the future. In the 5th International Workshop, special emphasis was placed on the recent results obtained in experiments searching for baryonic and non-baryonic dark matter. This volume comprises the high-quality review articles and papers contributed by leaders and promising young physicists who attended the conference. It provides the most recent updates on dark matter searches from both experimental and theoretical points of view.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings® (ISTP® / ISI Proceedings)• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)• CC Proceedings — Engineering & Physical Sciences
This book contains written versions of the presentations made at the 4th International Workshop on the Identification of Dark Matter (IDM 2002), held in York, UK, in September 2002. The objective of this workshop series is to assess the status of work attempting to identify what constitutes dark matter — in particular, to consider the techniques being used, how successful they are, and what new techniques are likely to improve prospects for identifying likely dark matter candidates in the future. At IDM 2002 special emphasis was placed on recent results obtained in searches for baryonic and non-baryonic dark matter. The proceedings include reviews of major topics on dark matter, as well as short contributed talks.
This volume is the latest in a prominent biannual series of scientific meetings on the exciting research topics of dark matter and, more recently, of dark energy. It contains a state-of-the-art update on detection efforts by experimental groups around the world trying to pin down exotic new forms of matter under the names of axions, neutralinos, wimps, primordial black holes, q balls, sterile neutrinos, as well as a tantalizing new form of dark energy component called phantom energy and quintessence. The book is self-contained as it also includes general reviews on recent cosmological observations — supernovae measurements, cosmic matter distribution surveys and cosmic radiation anisotropies — introducing even the uninitiated reader to this fascinating frontier of research.
Dark matter research is one of the most fascinating and active fields among current high-profile scientific endeavours. It holds the key to all major breakthroughs to come in the fields of cosmology and astroparticle physics. The present volume is particularly concerned with the sources and the detection of dark matter and dark energy in the universe and will prove to be an invaluable research tool for all scientists who work in this field.
Based on a Simons Symposium held in 2018, the proceedings in this volume focus on the theoretical, numerical, and observational quest for dark matter in the universe. Present ground-based and satellite searches have so far severely constrained the long-proposed theoretical models for dark matter. Nevertheless, there is continuously growing astrophysical and cosmological evidence for its existence. To address present and future developments in the field, novel ideas, theories, and approaches are called for. The symposium gathered together a new generation of experts pursuing innovative, more complex theories of dark matter than previously considered.This is being done hand in hand with experts in numerical astrophysical simulations and observational techniques—all paramount for deciphering the nature of dark matter. The proceedings volume provides coverage of the most advanced stage of understanding dark matter in various new frameworks. The collection will be useful for graduate students, postdocs, and investigators interested in cutting-edge research on one of the biggest mysteries of our universe.
In this thesis, I study the expected direct and indirect detection signals of dark matter. More precisely, I study three aspects of dark matter; I use hydrodynamic simulations to extract properties of weakly interacting dark matter that are relevant for both direct and indirect detection signals, and construct viable dark matter models with interesting experimental signatures. First, I analyze the full scale Illustris simulation, and find that Galactic indirect detection signals are expected to be largely symmetric, while extragalactic signals are not, due to recent mergers and the presence of substructure. Second, through the study of the high resolution Milky Way simulation Eris, I find that metal-poor halo stars can be used as tracers for the dark matter velocity distribution. I use the Sloan Digital Sky Survey to obtain the first empirical velocity distribution of dark matter, which weakens the expected direct detection limits by up to an order of magnitude at masses