Download Free Digital Systems Design And Practice Book in PDF and EPUB Free Download. You can read online Digital Systems Design And Practice and write the review.

This book provides a new paradigm for teaching digital systems design. It puts forth the view that modern digital logic consists of several interacting areas that combine in a cohesive fashion. This includes traditional subjects such as Boolean algebra, logic formalisms, Karnaugh maps, and other classical topics. However, it goes beyond these subject areas by including VHDL, CMOS, VLSI and RISC architectures to show what the field looks like to a modern logic designer. Modern digital design is no longer practiced as a stand-alone art. The integrated approach used in this book is designed to ensure that graduating engineers are prepared to meet the challenges of the new century.
System-on-a-chip (SoC) has become an essential technique to lower product costs and maximize power efficiency, particularly as the mobility and size requirements of electronics continues to grow. It has therefore become increasingly important for electrical engineers to develop a strong understanding of the key stages of hardware description language (HDL) design flow based on cell-based libraries or field-programmable gate array (FPGA) devices. Honed and revised through years of classroom use, Lin focuses on developing, verifying, and synthesizing designs of practical digital systems using the most widely used hardware description Language: Verilog HDL. Explains how to perform synthesis and verification to achieve optimized synthesis results and compiler times Offers complete coverage of Verilog syntax Illustrates the entire design and verification flow using an FPGA case study Presents real-world design examples such as LED and LCD displays, GPIO, UART, timers, and CPUs Emphasizes design/implementation tradeoff options, with coverage of ASICs and FPGAs Provides an introduction to design for testability Gives readers deeper understanding by using problems and review questions in each chapter Comes with downloadable Verilog HDL source code for most examples in the text Includes presentation slides of all book figures for student reference Digital System Designs and Practices Using Verilog HDL and FPGAs is an ideal textbook for either fundamental or advanced digital design courses beyond the digital logic design level. Design engineers who want to become more proficient users of Verilog HDL as well as design FPGAs with greater speed and accuracy will find this book indispensable.
The importance of interconnect design - Ideal transmission line fundamentals - Crosstalk - Nonideal interconnect issues - Connectors, packages, and vias - Nonideal return paths, simultaneous switching noise, and power delivery - Buffer modeling - Digital timing analysis - Design methodologies - Radiated emissions compliance and system noise minimization - High-speed measurement techniques.
This book describes digital design techniques with exercises. The concepts and exercises discussed are useful to design digital logic from a set of given specifications. Looking at current trends of miniaturization, the contents provide practical information on the issues in digital design and various design optimization and performance improvement techniques at logic level. The book explains how to design using digital logic elements and how to improve design performance. The book also covers data and control path design strategies, architecture design strategies, multiple clock domain design and exercises , low-power design strategies and solutions at the architecture and logic-design level. The book covers 60 exercises with solutions and will be useful to engineers during the architecture and logic design phase. The contents of this book prove useful to hardware engineers, logic design engineers, students, professionals and hobbyists looking to learn and use the digital design techniques during various phases of design.
Master FPGA digital system design and implementation with Verilog and VHDL This practical guide explores the development and deployment of FPGA-based digital systems using the two most popular hardware description languages, Verilog and VHDL. Written by a pair of digital circuit design experts, the book offers a solid grounding in FPGA principles, practices, and applications and provides an overview of more complex topics. Important concepts are demonstrated through real-world examples, ready-to-run code, and inexpensive start-to-finish projects for both the Basys and Arty boards. Digital System Design with FPGA: Implementation Using Verilog and VHDL covers: • Field programmable gate array fundamentals • Basys and Arty FPGA boards • The Vivado design suite • Verilog and VHDL • Data types and operators • Combinational circuits and circuit blocks • Data storage elements and sequential circuits • Soft-core microcontroller and digital interfacing • Advanced FPGA applications • The future of FPGA
This book has been designed for a first course on digital design for engineering and computer science students. It offers an extensive introduction on fundamental theories, from Boolean algebra and binary arithmetic to sequential networks and finite state machines, together with the essential tools to design and simulate systems composed of a controller and a datapath. The numerous worked examples and solved exercises allow a better understanding and more effective learning. All of the examples and exercises can be run on the Deeds software, freely available online on a webpage developed and maintained by the authors. Thanks to the learning-by-doing approach and the plentiful examples, no prior knowledge in electronics of programming is required. Moreover, the book can be adapted to different level of education, with different targets and depth, be used for self-study, and even independently from the simulator. The book draws on the authors’ extensive experience in teaching and developing learning materials.
What makes some computers slow? Why do some digital systems operate reliably for years while others fail mysteriously every few hours? How can some systems dissipate kilowatts while others operate off batteries? These questions of speed, reliability, and power are all determined by the system-level electrical design of a digital system. Digital Systems Engineering presents a comprehensive treatment of these topics. It combines a rigorous development of the fundamental principles in each area with real-world examples of circuits and methods. The book not only serves as an undergraduate textbook, filling the gap between circuit design and logic design, but can also help practising digital designers keep pace with the speed and power of modern integrated circuits. The techniques described in this book, once used only in supercomputers, are essential to the correct and efficient operation of any type of digital system.
"Digital Design provides a modern approach to learning the increasingly important topic of digital systems design. The text's focus on register-transfer-level design and present-day applications not only leads to a better appreciation of computers and of today's ubiquitous digital devices, but also provides for a better understanding of careers involving digital design and embedded system design. The book's key features include: An emphasis on register-transfer-level (RTL) design, the level at which most digital design is practiced today, giving readers a modern perspective of the field's applicability. Yet, coverage stays bottom-up and concrete, starting from basic transistors and gates, and moving step-by-step up to more complex components. Extensive use of basic examples to teach and illustrate new concepts, and of application examples, such as pacemakers, ultrasound machines, automobiles, and cell phones, to demonstrate the immediate relevance of the concepts. Separation of basic design from optimization, allowing development of a solid understanding of basic design, before considering the more advanced topic of optimization. Flexible organization, enabling early or late coverage of optimization methods or of HDLs, and enabling choice of VHDL, Verilog, or SystemC HDLs. Career insights and advice from designers with varying levels of experience. A clear bottom-up description of field-programmable gate arrays (FPGAs). About the Author: Frank Vahid is a Professor of Computer Science & Engineering at the University of California, Riverside. He holds Electrical Engineering and Computer Science degrees; has worked/consulted for Hewlett Packard, AMCC, NEC, Motorola, and medical equipment makers; holds 3 U.S. patents; has received several teaching awards; helped setup UCR's Computer Engineering program; has authored two previous textbooks; and has published over 120 papers on digital design topics (automation, architecture, and low-power).