Download Free Digital Signal Processing For Rfid Book in PDF and EPUB Free Download. You can read online Digital Signal Processing For Rfid and write the review.

This book discusses the fundamentals of RFID and the state-of-the-art research results in signal processing for RFID, including MIMO, blind source separation, anti-collision, localization, covert RFID and chipless RFID. Aimed at graduate students as well as academic and professional researchers/engineers in RFID technology, it enables readers to become conversant with the latest theory and applications of signal processing for RFID. Key Features: Provides a systematic and comprehensive insight into the application of modern signal processing techniques for RFID systems Discusses the operating principles, channel models of RFID, RFID protocols and analog/digital filter design for RFID Explores RFID-oriented modulation schemes and their performance Highlights research fields such as MIMO for RFID, blind signal processing for RFID, anti-collision of multiple RFID tags, localization with RFID, covert RFID and chipless RFID Contains tables, illustrations and design examples
This book discusses the fundamentals of RFID and the state-of-the-art research results in signal processing for RFID, including MIMO, blind source separation, anti-collision, localization, covert RFID and chipless RFID. Aimed at graduate students as well as academic and professional researchers/engineers in RFID technology, it enables readers to become conversant with the latest theory and applications of signal processing for RFID. Key Features: Provides a systematic and comprehensive insight into the application of modern signal processing techniques for RFID systems Discusses the operating principles, channel models of RFID, RFID protocols and analog/digital filter design for RFID Explores RFID-oriented modulation schemes and their performance Highlights research fields such as MIMO for RFID, blind signal processing for RFID, anti-collision of multiple RFID tags, localization with RFID, covert RFID and chipless RFID Contains tables, illustrations and design examples
A self-contained approach to DSP techniques and applications in radar imaging The processing of radar images, in general, consists of three major fields: Digital Signal Processing (DSP); antenna and radar operation; and algorithms used to process the radar images. This book brings together material from these different areas to allow readers to gain a thorough understanding of how radar images are processed. The book is divided into three main parts and covers: * DSP principles and signal characteristics in both analog and digital domains, advanced signal sampling, and interpolation techniques * Antenna theory (Maxwell equation, radiation field from dipole, and linear phased array), radar fundamentals, radar modulation, and target-detection techniques (continuous wave, pulsed Linear Frequency Modulation, and stepped Frequency Modulation) * Properties of radar images, algorithms used for radar image processing, simulation examples, and results of satellite image files processed by Range-Doppler and Stolt interpolation algorithms The book fully utilizes the computing and graphical capability of MATLAB? to display the signals at various processing stages in 3D and/or cross-sectional views. Additionally, the text is complemented with flowcharts and system block diagrams to aid in readers' comprehension. Digital Signal Processing Techniques and Applications in Radar Image Processing serves as an ideal textbook for graduate students and practicing engineers who wish to gain firsthand experience in applying DSP principles and technologies to radar imaging.
This vital new resource offers engineers and researchers a window on important new technology that will supersede the barcode and is destined to change the face of logistics and product data handling. In the last two decades, radio-frequency identification has grown fast, with accelerated take-up of RFID into the mainstream through its adoption by key users such as Wal-Mart, K-Mart and the US Department of Defense. RFID has many potential applications due to its flexibility, capability to operate out of line of sight, and its high data-carrying capacity. Yet despite optimistic projections of a market worth $25 billion by 2018, potential users are concerned about costs and investment returns. Clearly demonstrating the need for a fully printable chipless RFID tag as well as a powerful and efficient reader to assimilate the tag’s data, this book moves on to describe both. Introducing the general concepts in the field including technical data, it then describes how a chipless RFID tag can be made using a planar disc-loaded monopole antenna and an asymmetrical coupled spiral multi-resonator. The tag encodes data via the “spectral signature” technique and is now in its third-generation version with an ultra-wide band (UWB) reader operating at between 5 and 10.7GHz.
Presents a comprehensive overview and analysis of the recent developments in signal processing for Chipless Radio Frequency Identification Systems This book presents the recent research results on Radio Frequency Identification (RFID) and provides smart signal processing methods for detection, signal integrity, multiple-access and localization, tracking, and collision avoidance in Chipless RFID systems. The book is divided into two sections: The first section discusses techniques for detection and denoising in Chipless RFID systems. These techniques include signal space representation, detection of frequency signatures using UWB impulse radio interrogation, time domain analysis, singularity expansion method for data extraction, and noise reduction and filtering techniques. The second section covers collision and error correction protocols, multi-tag identification through time-frequency analysis, FMCW radar based collision detection and multi-access for Chipless RFID tags as we as localization and tag tracking. Describes the use of UWB impulse radio interrogation to remotely estimate the frequency signature of Chipless RFID tags using the backscatter principle Reviews the collision problem in both chipped and Chipless RFID systems and summarizes the prevailing anti-collision algorithms to address the problem Proposes state-of-the-art multi-access and signal integrity protocols to improve the efficacy of the system in multiple tag reading scenarios Features an industry approach to the integration of various systems of the Chipless RFID reader-integration of physical layers, middleware, and enterprise software Chipless Radio Frequency Identification Reader Signal Processing is primarily written for researchers in the field of RF sensors but can serve as supplementary reading for graduate students and professors in electrical engineering and wireless communications.
We were established in 2020 as an academic studies group. The purpose of our group is to share academic information, write academic books, and share new views and ideas. Our group, which started its activities with this mission, has become an association in 2022. The Academic Studies Group is a group formed by faculty members from more than 20 countries. Our group consists of 800 academicians, 500 of whom are from Turkey and 300 from various countries of the world. We held our first congress together with Çağ University in May 2021. We held our second congress together with Karabuk University in October 2021 . We held our thırd congress together with Osmaniye Korkut Ata University in May 2022. IV. The International Congress of Academic Studies (ASC-2022 / FALL) held in Poland between 3-5 November 2022, hosted by Alcide De Gasperi University of Euroregional Economy, POLAND, face-to-face and online. As the Academic Working Group, we are getting stronger with each congress. We would like to thank the organizing committee and our authors for their support at the congress. We hope to unite this cooperation under the roof of an institute or university in the coming years.
With the increased adoption of RFID (Radio Frequency Identification) across multiple industries, new research opportunities have arisen among many academic and engineering communities who are currently interested in maximizing the practice potential of this technology and in minimizing all its potential risks. Aiming at providing an outstanding survey of recent advances in RFID technology, this book brings together interesting research results and innovative ideas from scholars and researchers worldwide. Current Trends and Challenges in RFID offers important insights into: RF/RFID Background, RFID Tag/Antennas, RFID Readers, RFID Protocols and Algorithms, RFID Applications and Solutions. Comprehensive enough, the present book is invaluable to engineers, scholars, graduate students, industrial and technology insiders, as well as engineering and technology aficionados.
Presents trends and techniques for successful intelligent decision-making andtransfer of products through digital signal processing.
This book contains the proceedings of the 1st Latin American Congress on Automation and Robotics held at Panama City, Panama in February 2017. It gathers research work from researchers, scientists, and engineers from academia and private industry, and presents current and exciting research applications and future challenges in Latin American. The scope of this book covers a wide range of themes associated with advances in automation and robotics research encountered in engineering and scientific research and practice. These topics are related to control algorithms, systems automation, perception, mobile robotics, computer vision, educational robotics, robotics modeling and simulation, and robotics and mechanism design. LACAR 2017 has been sponsored by SENACYT (Secretaria Nacional de Ciencia, Tecnologia e Inovacion of Panama).
This two-volume work contains the papers presented at the 2016 International Conference on Civil, Architecture and Environmental Engineering (ICCAE 2016) that was held on 4-6 November 2016 in Taipei, Taiwan. The meeting was organized by China University of Technology and Taiwan Society of Construction Engineers and brought together professors, researchers, scholars and industrial pioneers from all over the world. ICCAE 2016 is an important forum for the presentation of new research developments, exchange of ideas and experience and covers the following subject areas: Structural Science & Architecture Engineering, Building Materials & Materials Science, Construction Equipment & Mechanical Science, Environmental Science & Environmental Engineering, Computer Simulation & Computer and Electrical Engineering.