Download Free Digital Modeling Of Material Appearance Book in PDF and EPUB Free Download. You can read online Digital Modeling Of Material Appearance and write the review.

Computer graphics systems are capable of generating stunningly realistic images of objects that have never physically existed. In order for computers to create these accurately detailed images, digital models of appearance must include robust data to give viewers a credible visual impression of the depicted materials. In particular, digital models demonstrating the nuances of how materials interact with light are essential to this capability. Digital Modeling of Material Appearance is the first comprehensive work on the digital modeling of material appearance: it explains how models from physics and engineering are combined with keen observation skills for use in computer graphics rendering. Written by the foremost experts in appearance modeling and rendering, this book is for practitioners who want a general framework for understanding material modeling tools, and also for researchers pursuing the development of new modeling techniques. The text is not a "how to" guide for a particular software system. Instead, it provides a thorough discussion of foundations and detailed coverage of key advances. Practitioners and researchers in applications such as architecture, theater, product development, cultural heritage documentation, visual simulation and training, as well as traditional digital application areas such as feature film, television, and computer games, will benefit from this much needed resource. ABOUT THE AUTHORS Julie Dorsey and Holly Rushmeier are professors in the Computer Science Department at Yale University and co-directors of the Yale Computer Graphics Group. François Sillion is a senior researcher with INRIA (Institut National de Recherche en Informatique et Automatique), and director of its Grenoble Rhône-Alpes research center. First comprehensive treatment of the digital modeling of material appearance Provides a foundation for modeling appearance, based on the physics of how light interacts with materials, how people perceive appearance, and the implications of rendering appearance on a digital computer An invaluable, one-stop resource for practitioners and researchers in a variety of fields dealing with the digital modeling of material appearance
A principal aim of computer graphics is to generate images that look as real as photographs. Realistic computer graphics imagery has however proven to be quite challenging to produce, since the appearance of materials arises from complicated physical processes that are difficult to analytically model and simulate, and image-based modeling of real material samples is often impractical due to the high-dimensional space of appearance data that needs to be acquired. This book presents a general framework based on the inherent coherency in the appearance data of materials to make image-based appearance modeling more tractable. We observe that this coherence manifests itself as low-dimensional structure in the appearance data, and by identifying this structure we can take advantage of it to simplify the major processes in the appearance modeling pipeline. This framework consists of two key components, namely the coherence structure and the accompanying reconstruction method to fully recover the low-dimensional appearance data from sparse measurements. Our investigation of appearance coherency has led to three major forms of low-dimensional coherence structure and three types of coherency-based reconstruction upon which our framework is built. This coherence-based approach can be comprehensively applied to all the major elements of image-based appearance modeling, from data acquisition of real material samples to user-assisted modeling from a photograph, from synthesis of volumes to editing of material properties, and from efficient rendering algorithms to physical fabrication of objects. In this book we present several techniques built on this coherency framework to handle various appearance modeling tasks both for surface reflections and subsurface scattering, the two primary physical components that generate material appearance. We believe that coherency-based appearance modeling will make it easier and more feasible for practitioners to bring computer graphics imagery to life. This book is aimed towards readers with an interest in computer graphics. In particular, researchers, practitioners and students will benefit from this book by learning about the underlying coherence in appearance structure and how it can be utilized to improve appearance modeling. The specific techniques presented in our manuscript can be of value to anyone who wishes to elevate the realism of their computer graphics imagery. For understanding this book, an elementary background in computer graphics is assumed, such as from an introductory college course or from practical experience with computer graphics.
Professional modeling is the foundation of every aspect of the 3D production pipeline and is essential to the success of any 3D computer graphics project. [digital] Modeling is unlike any other modeling book you’ve seen—it gets to the core of what it takes to create efficient production-ready models and demystifies the process of producing realistic and jaw-dropping graphics. Taking a software-neutral approach, it teaches you the essential skills and concepts that you can apply to modeling in any industry 3D software, such as 3ds Max, LightWave 3D, Maya, Modo, Silo, XSI, ZBrush and other leading programs. Modelers, animators, texture artists, and technical directors can all benefit from the valuable information covered in this jam-packed guide containing years of industry knowledge. Simply put, if you work in 3D, you must have this book. In this inspiring and informative guide to modeling, industry veteran William Vaughan teaches you how to: Master modeling techniques to produce professional results in any 3D application Use the tools of a professional digital modeler Control your models polygon-count as well as polygon-flow Create both organic and hard surface models Understand a modeler’s role in a production environment Gain the knowledge to land a job in the industry as a digital modeler Model using specific tools such as LightWave and 3ds Max in over 6 hours of video training in the accompanying downloadable lesson files (see below for details) And much more! All of Peachpit's eBooks contain the same content as the print edition. You will find a link in the last few pages of your eBook that directs you to the media files. Helpful tips: If you are able to search the book, search for "Where are the lesson files?" Go to the very last page of the book and scroll backwards. You will need a web-enabled device or computer in order to access the media files that accompany this ebook. Entering the URL supplied into a computer with web access will allow you to get to the files. Depending on your device, it is possible that your display settings will cut off part of the URL. To make sure this is not the case, try reducing your font size and turning your device to a landscape view. This should cause the full URL to appear.
This book surveys the state of the art in multidimensional, physically-correct visual texture modeling. Features: reviews the entire process of texture synthesis, including material appearance representation, measurement, analysis, compression, modeling, editing, visualization, and perceptual evaluation; explains the derivation of the most common representations of visual texture, discussing their properties, advantages, and limitations; describes a range of techniques for the measurement of visual texture, including BRDF, SVBRDF, BTF and BSSRDF; investigates the visualization of textural information, from texture mapping and mip-mapping to illumination- and view-dependent data interpolation; examines techniques for perceptual validation and analysis, covering both standard pixel-wise similarity measures and also methods of visual psychophysics; reviews the applications of visual textures, from visual scene analysis in medical applications, to high-quality visualizations in the automotive industry.
The essential resource for readers needing to understand visual perception and for those trying to produce, reproduce and measure color appearance in various applications such as imaging, entertainment, materials, design, architecture and lighting. This book builds upon the success of previous editions, and will continue to serve the needs of those professionals working in the field to solve practical problems or looking for background for on-going research projects. It would also act as a good course text for senior undergraduates and postgraduates studying color science. The 3rd Edition of Color Appearance Models contains numerous new and expanded sections providing an updated review of color appearance and includes many of the most widely used models to date, ensuring its continued success as the comprehensive resource on color appearance models. Key features: Presents the fundamental concepts and phenomena of color appearance (what objects look like in typical viewing situations) and practical techniques to measure, model and predict those appearances. Includes the clear explanation of fundamental concepts that makes the implementation of mathematical models very easy to understand. Explains many different types of models, and offers a clear context for the models, their use, and future directions in the field.
(Cont.) We also propose a new method that significantly reduces measurement cost and time of the bidirectional texture function (BTF) through a statistical characterization of texture appearance. Our reconstruction method combines naturally aligned images and alignment-insensitive statistics to produce visually plausible results. We demonstrate our acquisition system which is able to capture intricate materials like fabrics in less than ten minutes with commodity equipments. In addition, we present a method to facilitate effective user design in the space of material appearance. We introduce a metric in the space of reflectance which corresponds roughly to perceptual measures. The main idea of our approach is to evaluate reflectance differences in terms of their induced rendered images, instead of the reflectance function itself defined in the angular domains. With rendered images, we show that even a simple computational metric can provide good perceptual spacing and enable intuitive navigation of the reflectance space.
This book provides beginners in computer graphics and related fields a guide to the concepts, models, and technologies for realistic rendering of material appearance. It provides a complete and thorough overview of reflectance models and acquisition setups, along with providing a selection of the available tools to explore, visualize, and render the reflectance data. Reflectance models are under continuous development, since there is still no straightforward solution for general material representations. Every reflectance model is specific to a class of materials. Hence, each has strengths and weaknesses, which the book highlights in order to help the reader choose the most suitable model for any purpose. The overview of the acquisition setups will provide guidance to a reader who needs to acquire virtual materials and will help them to understand which measurement setup can be useful for a particular purpose, while taking into account the performance and the expected cost derived from the required components. The book also describes several recent open source software solutions, useful for visualizing and manipulating a wide variety of reflectance models and data.
This book offers detailed coverage of color, colorants, the coloring of materials, and reproducing the color of materials through imaging. It combines the clarity and ease of earlier editions with significant updates about the advancement in color theory and technology. Provides guidance for how to use color measurement instrumentation, make a visual assessment, set a visual tolerance, and select a formulation Supplements material with numerical examples, graphs, and illustrations that clarify and explain complex subjects Expands coverage of topics including spatial vision, solid-state lighting, cameras and spectrophotometers, and translucent materials
Material properties emerge from phenomena on scales ranging from Angstroms to millimeters, and only a multiscale treatment can provide a complete understanding. Materials researchers must therefore understand fundamental concepts and techniques from different fields, and these are presented in a comprehensive and integrated fashion for the first time in this book. Incorporating continuum mechanics, quantum mechanics, statistical mechanics, atomistic simulations and multiscale techniques, the book explains many of the key theoretical ideas behind multiscale modeling. Classical topics are blended with new techniques to demonstrate the connections between different fields and highlight current research trends. Example applications drawn from modern research on the thermo-mechanical properties of crystalline solids are used as a unifying focus throughout the text. Together with its companion book, Continuum Mechanics and Thermodynamics (Cambridge University Press, 2011), this work presents the complete fundamentals of materials modeling for graduate students and researchers in physics, materials science, chemistry and engineering.
"Algorithms for scene understanding and realistic image synthesis require accurate models of the way real-world materials scatter light. This study describes recent work in the graphics community to measure the spatially- and directionally-varying reflectance and subsurface scattering of complex materials, and to develop efficient representations and analysis tools for these datasets. We describe the design of acquisition devices and capture strategies for reflectance functions such as BRDFs and BSSRDFs, efficient factored representations, and a case study of capturing the appearance of human faces"--Abstract.