Download Free Digital Logic Techniques Book in PDF and EPUB Free Download. You can read online Digital Logic Techniques and write the review.

The third edition of Digital Logic Techniques provides a clear and comprehensive treatment of the representation of data, operations on data, combinational logic design, sequential logic, computer architecture, and practical digital circuits. A wealth of exercises and worked examples in each chapter give students valuable experience in applying the concepts and techniques discussed.Beginning with an objective comparison between analogue and digital representation of data, the author presents the Boolean algebra framework for digital electronics, develops combinational logic design from first principles, and presents cellular logic as an alternative structure more relevant than canonical forms to VLSI implementation. He then addresses sequential logic design and develops a strategy for designing finite state machines, giving students a solid foundation for more advanced studies in automata theory.The second half of the book focuses on the digital system as an entity. Here the author examines the implementation of logic systems in programmable hardware, outlines the specification of a system, explores arithmetic processors, and elucidates fault diagnosis. The final chapter examines the electrical properties of logic components, compares the different logic families, and highlights the problems that can arise in constructing practical hardware systems.
This book describes digital design techniques with exercises. The concepts and exercises discussed are useful to design digital logic from a set of given specifications. Looking at current trends of miniaturization, the contents provide practical information on the issues in digital design and various design optimization and performance improvement techniques at logic level. The book explains how to design using digital logic elements and how to improve design performance. The book also covers data and control path design strategies, architecture design strategies, multiple clock domain design and exercises , low-power design strategies and solutions at the architecture and logic-design level. The book covers 60 exercises with solutions and will be useful to engineers during the architecture and logic design phase. The contents of this book prove useful to hardware engineers, logic design engineers, students, professionals and hobbyists looking to learn and use the digital design techniques during various phases of design.
New, updated and expanded topics in the fourth edition include: EBCDIC, Grey code, practical applications of flip-flops, linear and shaft encoders, memory elements and FPGAs. The section on fault-finding has been expanded. A new chapter is dedicated to the interface between digital components and analog voltages. - A highly accessible, comprehensive and fully up to date digital systems text - A well known and respected text now revamped for current courses - Part of the Newnes suite of texts for HND/1st year modules
This text and reference provides students and practicing engineers with an introduction to the classical methods of designing electrical circuits, but incorporates modern logic design techniques used in the latest microprocessors, microcontrollers, microcomputers, and various LSI components. The book provides a review of the classical methods e.g., the basic concepts of Boolean algebra, combinational logic and sequential logic procedures, before engaging in the practical design approach and the use of computer-aided tools. The book is enriched with numerous examples (and their solutions), over 500 illustrations, and includes a CD-ROM with simulations, additional figures, and third party software to illustrate the concepts discussed in the book.
The fundamentals and implementation of digital electronics are essential to understanding the design and working of consumer/industrial electronics, communications, embedded systems, computers, security and military equipment. Devices used in applications such as these are constantly decreasing in size and employing more complex technology. It is therefore essential for engineers and students to understand the fundamentals, implementation and application principles of digital electronics, devices and integrated circuits. This is so that they can use the most appropriate and effective technique to suit their technical need. This book provides practical and comprehensive coverage of digital electronics, bringing together information on fundamental theory, operational aspects and potential applications. With worked problems, examples, and review questions for each chapter, Digital Electronics includes: information on number systems, binary codes, digital arithmetic, logic gates and families, and Boolean algebra; an in-depth look at multiplexers, de-multiplexers, devices for arithmetic operations, flip-flops and related devices, counters and registers, and data conversion circuits; up-to-date coverage of recent application fields, such as programmable logic devices, microprocessors, microcontrollers, digital troubleshooting and digital instrumentation. A comprehensive, must-read book on digital electronics for senior undergraduate and graduate students of electrical, electronics and computer engineering, and a valuable reference book for professionals and researchers.
As electronic devices become increasingly prevalent in everyday life, digital circuits are becoming even more complex and smaller in size. This book presents the basic principles of digital electronics in an accessible manner, allowing the reader to grasp the principles of combinational and sequential logic and the underlying techniques for the analysis and design of digital circuits. Providing a hands-on approach, this work introduces techniques and methods for establishing logic equations and designing and analyzing digital circuits. Each chapter is supplemented with practical examples and well-designed exercises with worked solutions. This second of three volumes focuses on sequential and arithmetic logic circuits. It covers various aspects related to the following topics: latch and flip-flop; binary counters; shift registers; arithmetic and logic circuits; digital integrated circuit technology; semiconductor memory; programmable logic circuits. Along with the two accompanying volumes, this book is an indispensable tool for students at a bachelors or masters level seeking to improve their understanding of digital electronics, and is detailed enough to serve as a reference for electronic, automation and computer engineers.
The omnipresence of electronic devices in our everyday lives has been accompanied by the downscaling of chip feature sizes and the ever increasing complexity of digital circuits. This book is devoted to the analysis and design of digital circuits, where the signal can assume only two possible logic levels. It deals with the basic principles and concepts of digital electronics. It addresses all aspects of combinational logic and provides a detailed understanding of logic gates that are the basic components in the implementation of circuits used to perform functions and operations of Boolean algebra. Combinational logic circuits are characterized by outputs that depend only on the actual input values. Efficient techniques to derive logic equations are proposed together with methods of analysis and synthesis of combinational logic circuits. Each chapter is well structured and is supplemented by a selection of solved exercises covering logic design practices.
PRINCIPLES OF MODERN DIGITAL DESIGN FROM UNDERLYING PRINCIPLES TO IMPLEMENTATION—A THOROUGH INTRODUCTION TO DIGITAL LOGIC DESIGN With this book, readers discover the connection between logic design principles and theory and the logic design and optimization techniques used in practice. Therefore, they not only learn how to implement current design techniques, but also how these techniques were developed and why they work. With a deeper understanding of the underlying principles, readers become better problem-solvers when faced with new and difficult digital design challenges. Principles of Modern Digital Design begins with an examination of number systems and binary code followed by the fundamental concepts of digital logic. Next, readers advance to combinational logic design. Armed with this foundation, they are then introduced to VHDL, a powerful language used to describe the function of digital circuits and systems. All the major topics needed for a thorough understanding of modern digital design are presented, including: Fundamentals of synchronous sequential circuits and synchronous sequential circuit design Combinational logic design using VHDL Counter design Sequential circuit design using VHDL Asynchronous sequential circuits VHDL-based logic design examples are provided throughout the book to illustrate both the underlying principles and practical design applications. Each chapter is followed by exercises that enable readers to put their skills into practice by solving realistic digital design problems. An accompanying website with Quartus II software enables readers to replicate the book’s examples and perform the exercises. This book can be used for either a two- or one-semester course for undergraduate students in electrical and computer engineering and computer science. Its thorough explanation of theory, coupled with examples and exercises, enables both students and practitioners to master and implement modern digital design techniques with confidence.