Download Free Digital Images Book in PDF and EPUB Free Download. You can read online Digital Images and write the review.

These fifteen contributions by distinguished vision and imaging scientists explore the role of human vision in the design of modem image communication systems. A dominant theme in the book is image compression—how compression algorithms can be designed to make best use of what we know about human vision. Electronic image communications, which encompass television, high-definition television, teleconferencing, multimedia, digital photography, desktop publishing, and digital movies, is a rapidly growing segment of technology and business. Because these products and technologies are designed for human viewing, knowledge of human perception is essential to optimal design. This book provides a timely compendium of important ideas and perspectives on such subjects as the key aspects of human visual sensitivity that are relevant to image communications and, conversely, the major problems in image communications that vision science can address; the mathematical models of human vision that are useful in the design of image comunications systems; reliable and efficient methods of evaluating visual quality; and aspects of human vision that can be exploited to provide substantial improvements in coding efficiency. Andrew B. Watson is Senior Scientist for Vision Research at NASA. Contributors: Albert J. Ahumada, Jr. E. Barth. V. Michael Bove, Jr. Gershon Buchsbaum. Phillipe Cassereau. Pamela C. Cosman. Scott J. Daly. Michael Eckert. Bernd Girod. William E. Glenn. Robert M. Gray. Paul J. Hearty. Bradley Horowitz. Stanley Klein. Jeffrey Lubin, Cynthia Null. Karen L. Oehler. Alex Pentland. Todd Reed. Andrew B. Watson. B. Wegmann. Christof Zetsche.
In the past decade, the way image based media is created, disseminated, and shared has changed exponentially, as digital imaging technology has replaced traditional film based media. Digital images have become the pervasive photographic medium of choice for the general public. Most libraries, archives, museums, and galleries have undertaken some type of digitisation program: converting their holdings into two dimensional digital images which are available for the general user via the Internet. This raises issues for those aiming to facilitate the creation and preservation of digital images whilst supplying and improving user access to image based material. Digital Images for the Information Professional provides an overview of the place of images in the changing information environment, and the use, function, and appropriation of digital images in both institutional and personal settings. Covering the history, technical underpinnings, sustainability, application, and management of digital images, the text is an accessible guide to both established and developing imaging technologies, providing those within the information sector with essential background knowledge of this increasingly ubiquitous medium.
Compression, restoration and recognition are three of the key components of digital imaging. The mathematics needed to understand and carry out all these components are explained here in a style that is at once rigorous and practical with many worked examples, exercises with solutions, pseudocode, and sample calculations on images. The introduction lists fast tracks to special topics such as Principal Component Analysis, and ways into and through the book, which abounds with illustrations. The first part describes plane geometry and pattern-generating symmetries, along with some on 3D rotation and reflection matrices. Subsequent chapters cover vectors, matrices and probability. These are applied to simulation, Bayesian methods, Shannon's information theory, compression, filtering and tomography. The book will be suited for advanced courses or for self-study. It will appeal to all those working in biomedical imaging and diagnosis, computer graphics, machine vision, remote sensing, image processing and information theory and its applications.
First Published in 2001. Routledge is an imprint of Taylor & Francis, an informa company.
A comprehensive and practical analysis and overview of the imaging chain through acquisition, processing and display The Handbook of Digital Imaging provides a coherent overview of the imaging science amalgam, focusing on the capture, storage and display of images. The volumes are arranged thematically to provide a seamless analysis of the imaging chain from source (image acquisition) to destination (image print/display). The coverage is planned to have a very practical orientation to provide a comprehensive source of information for practicing engineers designing and developing modern digital imaging systems. The content will be drawn from all aspects of digital imaging including optics, sensors, quality, control, colour encoding and decoding, compression, projection and display. Contains approximately 50 highly illustrated articles printed in full colour throughout Over 50 Contributors from Europe, US and Asia from academia and industry The 3 volumes are organized thematically for enhanced usability: Volume 1: Image Capture and Storage; Volume 2: Image Display and Reproduction, Hardcopy Technology, Halftoning and Physical Evaluation, Models for Halftone Reproduction; Volume 3: Imaging System Applications, Media Imaging, Remote Imaging, Medical and Forensic Imaging 3 Volumes www.handbookofdigitalimaging.com
This book carries forward recent work on visual patterns and structures in digital images and introduces a near set-based a topology of digital images. Visual patterns arise naturally in digital images viewed as sets of non-abstract points endowed with some form of proximity (nearness) relation. Proximity relations make it possible to construct uniform topologies on the sets of points that constitute a digital image. In keeping with an interest in gaining an understanding of digital images themselves as a rich source of patterns, this book introduces the basics of digital images from a computer vision perspective. In parallel with a computer vision perspective on digital images, this book also introduces the basics of proximity spaces. Not only the traditional view of spatial proximity relations but also the more recent descriptive proximity relations are considered. The beauty of the descriptive proximity approach is that it is possible to discover visual set patterns among sets that are non-overlapping and non-adjacent spatially. By combining the spatial proximity and descriptive proximity approaches, the search for salient visual patterns in digital images is enriched, deepened and broadened. A generous provision of Matlab and Mathematica scripts are used in this book to lay bare the fabric and essential features of digital images for those who are interested in finding visual patterns in images. The combination of computer vision techniques and topological methods lead to a deep understanding of images.
Joe Farace is an award-winning photographer with more than 30 books and 1,600 articles to his credit. So there’s no one better to take monochrome into the digital age. Whether you’re shooting digital black and white from your camera or converting color photographs to monochrome on the computer, you’ll discover an array of unique, innovative, and inspirational techniques suitable for shutterbugs of every level. Farace explains what kinds of software programs are best, and how to use them to manipulate your photos in diverse ways. He also discusses various in-camera effects including toning and soft focus. The detailed information and instruction cover everything from creating traditional looking black-and-white or sepia images, to adding color selectively for a one-of-a-kind, fine-art approach.
In the past decade, the way image based media is created, disseminated, and shared has changed exponentially, as digital imaging technology has replaced traditional film based media.Digital Images for the Information Professional provides an overview of
Written as an introduction for undergraduate students, this textbook covers the most important methods in digital image processing. Formal and mathematical aspects are discussed at a fundamental level and various practical examples and exercises supplement the text. The book uses the image processing environment ImageJ, freely distributed by the National Institute of Health. A comprehensive website supports the book, and contains full source code for all examples in the book, a question and answer forum, slides for instructors, etc. Digital Image Processing in Java is the definitive textbook for computer science students studying image processing and digital processing.
Binary Digital Image Processing is aimed at faculty, postgraduate students and industry specialists. It is both a text reference and a textbook that reviews and analyses the research output in this field of binary image processing. It is aimed at both advanced researchers as well as educating the novice to this area. The theoretical part of this book includes the basic principles required for binary digital image analysis. The practical part which will take an algorithmic approach addresses problems which find applications beyond binary digital line image processing.The book first outlines the theoretical framework underpinning the study of digital image processing with particular reference to those needed for line image processing. The theoretical tools in the first part of the book set the stage for the second and third parts, where low-level binary image processing is addressed and then intermediate level processing of binary line images is studied. The book concludes with some practical applications of this work by reviewing some industrial and software applications (engineering drawing storage and primitive extraction, fingerprint compression). - Outlines the theoretical framework underpinning the study of digital image processing with particular reference to binary line image processing - Addresses low-level binary image processing, reviewing a number of essential characteristics of binary digital images and providing solution procedures and algorithms - Includes detailed reviews of topics in binary digital image processing with up-to-date research references in relation to each of the problems under study - Includes some practical applications of this work by reviewing some common applications - Covers a range of topics, organised by theoretical field rather than being driven by problem definitions