Download Free Digital Control Applications Illustrated With Matlab Book in PDF and EPUB Free Download. You can read online Digital Control Applications Illustrated With Matlab and write the review.

Digital Control Applications Illustrated with MATLAB covers the modeling, analysis, and design of linear discrete control systems. Illustrating all topics using the micro-computer implementation of digital controllers aided by MATLAB, Simulink, and FEEDBACK
This book provides readers with a solid set of diversified and essential tools for the theoretical modeling and control of complex robotic systems, as well as for digital human modeling and realistic motion generation. Following a comprehensive introduction to the fundamentals of robotic kinematics, dynamics and control systems design, the author extends robotic modeling procedures and motion algorithms to a much higher-dimensional, larger scale and more sophisticated research area, namely digital human modeling. Most of the methods are illustrated by MATLABTM codes and sample graphical visualizations, offering a unique closed loop between conceptual understanding and visualization. Readers are guided through practicing and creating 3D graphics for robot arms as well as digital human models in MATLABTM, and through driving them for real-time animation. This work is intended to serve as a robotics textbook with an extension to digital human modeling for senior undergraduate and graduate engineering students. At the same time, it represents a comprehensive reference guide for all researchers, scientists and professionals eager to learn the fundamentals of robotic systems as well as the basic methods of digital human modeling and motion generation.
This book discusses analysis and design techniques for linear feedback control systems using MATLAB® software. By reducing the mathematics, increasing MATLAB working examples, and inserting short scripts and plots within the text, the authors have created a resource suitable for almost any type of user. The book begins with a summary of the properties of linear systems and addresses modeling and model reduction issues. In the subsequent chapters on analysis, the authors introduce time domain, complex plane, and frequency domain techniques. Their coverage of design includes discussions on model-based controller designs, PID controllers, and robust control designs. A unique aspect of the book is its inclusion of a chapter on fractional-order controllers, which are useful in control engineering practice.
This book uses numerous in-depth explanations, diagrams, calculations, and tables to provide an intensive overview of modern control theory and control system design. Mathematics is kept to a minimum, and engineering applications are stressed throughout. Completely updated and packed with student-friendly features, the sixth edition presents a range of updated examples using MATLAB, as well as an appendix listing MATLAB functions for optimizing control system analysis and design. Over 75 percent of the problems presented in the previous edition have been revised or replaced.
Electrical power is harnessed using several energy sources, including coal, hydel, nuclear, solar, and wind. Generated power is needed to be transferred over long distances to support load requirements of customers, viz., residential, industrial, and commercial. This necessitates proper design and analysis of power systems to efficiently control the power flow from one point to the other without delay, disturbance, or interference. Ideal for utility and power system design professionals and students, this book is richly illustrated with MATLAB® and Electrical Transient Analysis Program (ETAP®) to succinctly illustrate concepts throughout, and includes examples, case studies, and problems. Features Illustrated throughout with MATLAB and ETAP Proper use of positive/negative/zero sequence analysis of a given one-line diagram (OLD) associated with a grid, as well as finger-holding instructions to tackle a power system analysis (PSA) problem for a given OLD of a grid On-line evaluation of power flow, short-circuit analysis, and related PSA for a given OLD Appropriately learn the finer nuances of designing the several components of a PSA, including transmission lines, transformers, generators/motors, and illustrate the corresponding equivalent circuit Case studies from utilities and independent system operators
This new textbook in signals and systems provides a pedagogically rich approach to what can commonly be a mathematically dry subject. With features like historical notes, highlighted common mistakes, and applications in controls, communications, and signal processing, Chaparro helps students appreciate the usefulness of the techniques described in the book. Each chapter contains a section with MatLab applications. - Pedagogically rich introduction to signals and systems using historical notes, pointing out "common mistakes", and relating concepts to realistic examples throughout to motivate learning the material - Introduces both continuous and discrete systems early, then studies each (separately) in more depth later - Extensive set of worked examples and homework assignments, with applications to controls, communications, and signal processing throughout - Provides review of all the background math necessary to study the subject - MatLab applications in every chapter
Quickly Engages in Applying Algorithmic Techniques to Solve Practical Signal Processing Problems With its active, hands-on learning approach, this text enables readers to master the underlying principles of digital signal processing and its many applications in industries such as digital television, mobile and broadband communications, and medical/scientific devices. Carefully developed MATLAB® examples throughout the text illustrate the mathematical concepts and use of digital signal processing algorithms. Readers will develop a deeper understanding of how to apply the algorithms by manipulating the codes in the examples to see their effect. Moreover, plenty of exercises help to put knowledge into practice solving real-world signal processing challenges. Following an introductory chapter, the text explores: Sampled signals and digital processing Random signals Representing signals and systems Temporal and spatial signal processing Frequency analysis of signals Discrete-time filters and recursive filters Each chapter begins with chapter objectives and an introduction. A summary at the end of each chapter ensures that one has mastered all the key concepts and techniques before progressing in the text. Lastly, appendices listing selected web resources, research papers, and related textbooks enable the investigation of individual topics in greater depth. Upon completion of this text, readers will understand how to apply key algorithmic techniques to address practical signal processing problems as well as develop their own signal processing algorithms. Moreover, the text provides a solid foundation for evaluating and applying new digital processing signal techniques as they are developed.
This book offers fundamental information on the analysis and synthesis of continuous and sampled data control systems. It includes all the required preliminary materials (from mathematics, signals and systems) that are needed in order to understand control theory, so readers do not have to turn to other textbooks. Sampled data systems have recently gained increasing importance, as they provide the basis for the analysis and design of computer-controlled systems. Though the book mainly focuses on linear systems, input/output approaches and state space descriptions are also provided. Control structures such as feedback, feed forward, internal model control, state feedback control, and the Youla parameterization approach are discussed, while a closing section outlines advanced areas of control theory. Though the book also contains selected examples, a related exercise book provides Matlab/Simulink exercises for all topics discussed in the textbook, helping readers to understand the theory and apply it in order to solve control problems. Thanks to this combination, readers will gain a basic grasp of systems and control, and be able to analyze and design continuous and discrete control systems.
The book serves to be both a textbook and a reference for the theory and laboratory courses offered to undergraduate and graduate engineering students, and for practicing engineers.