Download Free Digital Communication Techniques Signal Design And Detection Book in PDF and EPUB Free Download. You can read online Digital Communication Techniques Signal Design And Detection and write the review.

Written by internationally recognized leaders in the field, this volume presents complete, comprehensive and modern coverage of the theory and practice of signal design and detection in digital communications. Based on the authors' vast industrial experience, it explores the basics as well as the state-of-the-art developments in both modulation and detection.
The four short years since Digital Communication over Fading Channels became an instant classic have seen a virtual explosion of significant new work on the subject, both by the authors and by numerous researchers around the world. Foremost among these is a great deal of progress in the area of transmit diversity and space-time coding and the associated multiple input-multiple output (MIMO) channel. This new edition gathers these and other results, previously scattered throughout numerous publications, into a single convenient and informative volume. Like its predecessor, this Second Edition discusses in detail coherent and noncoherent communication systems as well as a large variety of fading channel models typical of communication links found in the real world. Coverage includes single- and multichannel reception and, in the case of the latter, a large variety of diversity types. The moment generating function (MGF)-based approach for performance analysis, introduced by the authors in the first edition and referred to in literally hundreds of publications, still represents the backbone of the book's presentation. Important features of this new edition include: * An all-new, comprehensive chapter on transmit diversity, space-time coding, and the MIMO channel, focusing on performance evaluation * Coverage of new and improved diversity schemes * Performance analyses of previously known schemes in new and different fading scenarios * A new chapter on the outage probability of cellular mobile radio systems * A new chapter on the capacity of fading channels * And much more Digital Communication over Fading Channels, Second Edition is an indispensable resource for graduate students, researchers investigating these systems, and practicing engineers responsible for evaluating their performance.
Providing the underlying principles of digital communication and the design techniques of real-world systems, this textbook prepares senior undergraduate and graduate students for the engineering practices required in industry. Covering the core concepts, including modulation, demodulation, equalization, and channel coding, it provides step-by-step mathematical derivations to aid understanding of background material. In addition to describing the basic theory, the principles of system and subsystem design are introduced, enabling students to visualize the intricate connections between subsystems and understand how each aspect of the design supports the overall goal of achieving reliable communications. Throughout the book, theories are linked to practical applications with over 250 real-world examples, whilst 370 varied homework problems in three levels of difficulty enhance and extend the text material. With this textbook, students can understand how digital communication systems operate in the real world, learn how to design subsystems, and evaluate end-to-end performance with ease and confidence.
This practical guide helps readers to learn how to develop and implement synchronization functions in digital communication systems.
Introduction to Digital Communications explores the basic principles in the analysis and design of digital communication systems, including design objectives, constraints and trade-offs. After portraying the big picture and laying the background material, this book lucidly progresses to a comprehensive and detailed discussion of all critical elements and key functions in digital communications. - The first undergraduate-level textbook exclusively on digital communications, with a complete coverage of source and channel coding, modulation, and synchronization. - Discusses major aspects of communication networks and multiuser communications - Provides insightful descriptions and intuitive explanations of all complex concepts - Focuses on practical applications and illustrative examples. - A companion Web site includes solutions to end-of-chapter problems and computer exercises, lecture slides, and figures and tables from the text
Master the fundamentals of digital communications systems with this accessible and hands-on introductory textbook, carefully interweaving theory and practice. The just-in-time approach introduces essential background as needed, keeping academic theory firmly linked to practical applications. The example-led teaching frames key concepts in the context of real-world systems, such as 5G, WiFi, and GPS. Stark provides foundational material on the trade-offs between energy and bandwidth efficiency, giving students a solid grounding in the fundamental challenges of designing digital communications systems. Features include over 300 illustrative figures, 80 examples, and 130 end-of-chapter problems to reinforce student understanding, with solutions for instructors. Accompanied online by lecture slides, computational MATLAB® and Python resources, and supporting data sets, this is the ideal introduction to digital communications for senior undergraduate and graduate students in electrical engineering.
An engineer's introduction to concepts, algorithms, and advancements in Digital Signal Processing. This lucidly written resource makes extensive use of real-world examples as it covers all the important design and engineering references.
A self-contained approach to DSP techniques and applications in radar imaging The processing of radar images, in general, consists of three major fields: Digital Signal Processing (DSP); antenna and radar operation; and algorithms used to process the radar images. This book brings together material from these different areas to allow readers to gain a thorough understanding of how radar images are processed. The book is divided into three main parts and covers: * DSP principles and signal characteristics in both analog and digital domains, advanced signal sampling, and interpolation techniques * Antenna theory (Maxwell equation, radiation field from dipole, and linear phased array), radar fundamentals, radar modulation, and target-detection techniques (continuous wave, pulsed Linear Frequency Modulation, and stepped Frequency Modulation) * Properties of radar images, algorithms used for radar image processing, simulation examples, and results of satellite image files processed by Range-Doppler and Stolt interpolation algorithms The book fully utilizes the computing and graphical capability of MATLAB? to display the signals at various processing stages in 3D and/or cross-sectional views. Additionally, the text is complemented with flowcharts and system block diagrams to aid in readers' comprehension. Digital Signal Processing Techniques and Applications in Radar Image Processing serves as an ideal textbook for graduate students and practicing engineers who wish to gain firsthand experience in applying DSP principles and technologies to radar imaging.