Download Free Dig Where You Stand 4 Book in PDF and EPUB Free Download. You can read online Dig Where You Stand 4 and write the review.

The Fourth International Conference on the History of Mathematics Education was hosted by Academy of Sciences and University of Turin (Italy). About 50 senior and junior researchers from 16 countries met for four days to talk about one topic: the history of mathematics education. In total 44 contributions were presented. The themes were Ideas, people and movements, Transmission of ideas, Teacher education, Geometry and textbooks, Textbooks – changes and origins, Curriculum and reform, Teaching in special institutions, and Teaching of geometry. In this volume you find 28 of the papers, all of them peer-reviewed. Since the first international conference on the history of mathematics education, the aim has been to develop this area of research, to attract more researchers and provide new insights that stimulate further “digging”. It is therefore very pleasing that so many new young researchers joined the conference, presenting results from ongoing or recently finished PhD projects. This makes us confident about a prosperous future of this research area as we look forward to the Fifth International Conference on the History of Mathematics Education, to be held in Utrecht, the Netherlands, in September 2017. Previous international conferences on the history of mathematics education: 2009 in Garðabær (Iceland) 2011 in Lisbon (Portugal) 2013 in Uppsala (Sweden)
Fiddle making, spring houses, horse trading, sassafras tea, berry buckets, gardening, and other affairs of plain living are the topics covered in this volume.
ICMI (or IMUK) was founded in 1908 and initiated the establishment of national subcommissions to launch national activities in response to the IMUK agenda and to promote the reform proposals within each member country.While ICMI’s activities were thoroughly studied, the activities of the national subcommissions are studied only very marginally. In the meantime, their work has been of major importance – both because of their role in exploring and documenting the development of mathematics education at the beginning of the 20th century, and because of the changes and new ideas which they brought to their countries. Importantly, even if some results of their activities were analyzed within their countries in the corresponding languages, almost nothing is known internationally. This book is planned to deepen our knowledge on at least some of the national subcommissions. The book will interest both researchers and others interested in mathematics education and its development.
This book offers insights into the history of mathematics education, covering both the current state of the art of research and the methodology of the field. History of mathematics education is treated in the book as a part of social history. This book grew out of the presentations delivered at the International Congress on Mathematics Education in Hamburg. Modern development and growing internationalization of mathematics education made it clear that many urgent questions benefit from a historical approach. The chapters present viewpoints from the following countries: Belgium, Brazil, Cambodia, China, Cyprus, Germany, Iceland, Italy, the Netherlands, Russia,Spain and Sweden. Each chapter represents significant directions of historical studies. The book is a valuable source for every historian of mathematics education and those interested in mathematics education and its development.
​These three volumes constitute the first complete English translation of Felix Klein’s seminal series “Elementarmathematik vom höheren Standpunkte aus”. “Complete” has a twofold meaning here: First, there now exists a translation of volume III into English, while until today the only translation had been into Chinese. Second, the English versions of volume I and II had omitted several, even extended parts of the original, while we now present a complete revised translation into modern English. The volumes, first published between 1902 and 1908, are lecture notes of courses that Klein offered to future mathematics teachers, realizing a new form of teacher training that remained valid and effective until today: Klein leads the students to gain a more comprehensive and methodological point of view on school mathematics. The volumes enable us to understand Klein’s far-reaching conception of elementarisation, of the “elementary from a higher standpoint”, in its implementation for school mathematics. In Volume III, Klein explores the relationship between precision and approximation mathematics. He crosses the various fields of mathematics – from functions in one and two variables to practical geometry to space curves and surfaces – underlining the relation between the exactness of the idealised concepts and the approximations to be considered in applications. Logical procedures are confronted with the way in which concepts arise starting from observations. It is a comparison between properties pertaining only to the theoretical field of abstract mathematics and properties that can be grasped by intuition. The final part, which concerns gestalt relations of curves and surfaces, shows Klein to be the master of the art of description of geometric forms.
For anyone interested in the history and effects of the introduction of so-called “Modern Mathematics” (or “Mathématique Moderne,” or “New Mathematics,” etc.) this book, by Dirk De Bock and Geert Vanpaemel, is essential reading. The two authors are experienced and highly qualified Belgian scholars and the book looks carefully at events relating to school mathematics for the period from the end of World War II to 2010. Initially the book focuses on events which helped to define the modern mathematics revolution in Belgium before and during the 1960s. The book does much more than that, however, for it traces the influence of these events on national and international debates during the early phases of the reform. By providing readers with translations into English of relevant sections of key Continental documents outlining the major ideas of leading Continental scholars who contributed to the “Mathématique Moderne” movement, this book makes available to a wide readership, the theoretical, social, and political backdrops of Continental new mathematics reforms. In particular, the book focuses on the contributions made by Belgians such as Paul Libois, Willy Servais, Frédérique Lenger, and Georges Papy. The influence of modern mathematics fell away rapidly in the 1970s, however, and the authors trace the rise and fall, from that time into the 21st century, of a number of other approaches to school mathematics—in Belgium, in other Western European nations, and in North America. In summary, this is an outstanding, landmark publication displaying the fruits of deep scholarship and careful research based on extensive analyses of primary sources.
The international New Math developments between about 1950 through 1980, are regarded by many mathematics educators and education historians as the most historically important development in curricula of the twentieth century. It attracted the attention of local and international politicians, of teachers, and of parents, and influenced the teaching and learning of mathematics at all levels—kindergarten to college graduate—in many nations. After garnering much initial support it began to attract criticism. But, as Bill Jacob and the late Jerry Becker show in Chapter 17, some of the effects became entrenched. This volume, edited by Professor Dirk De Bock, of Belgium, provides an outstanding overview of the New Math/modern mathematics movement. Chapter authors provide exceptionally high-quality analyses of the rise of the movement, and of subsequent developments, within a range of nations. The first few chapters show how the initial leadership came from mathematicians in European nations and in the United States of America. The background leaders in Europe were Caleb Gattegno and members of a mysterious group of mainly French pure mathematicians, who since the 1930s had published under the name of (a fictitious) “Nicolas Bourbaki.” In the United States, there emerged, during the 1950s various attempts to improve U.S. mathematics curricula and teaching, especially in secondary schools and colleges. This side of the story climaxed in 1957 when the Soviet Union succeeded in launching “Sputnik,” the first satellite. Undoubtedly, this is a landmark publication in education. The foreword was written by Professor Bob Moon, one of a few other scholars to have written on the New Math from an international perspective. The final “epilogue” chapter, by Professor Geert Vanpaemel, a historian, draws together the overall thrust of the volume, and makes links with the general history of curriculum development, especially in science education, including recent globalization trends.
This work examines the main directions of research conducted on the history of mathematics education. It devotes substantial attention to research methodologies and the connections between this field and other scholarly fields. The results of a survey about academic literature on this subject are accompanied by a discussion of what has yet to be done and problems that remain unsolved. The main topics you will find in “ICME-13 Topical Survey” include: • Discussions of methodological issues in the history of mathematics education and of the relation between this field and other scholarly fields. • The history of the formation and transformation of curricula and textbooks as a reflection of trends in social-economic, cultural and scientific-technological development. • The influence of politics, ideology and economics on the development of mathematics education, from a historical perspective. • The history of the preeminent mathematics education organizations and the work of leading figures in mathematics education. • Mathematics education practices and tools and the preparation of mathematics teachers, from a historical perspective.
This book describes and analyses the history of Dutch mathematics education from the point of view of the changing motivations behind the teaching of mathematics over a 200 year period. During the course of the 19th century, mathematics in the Netherlands developed from a topic for practitioners into a school topic that was taught to almost all pupils of secondary education. As mathematics teaching gradually lost its practical orientation and became more and more motivated on the basis of its supposed formative value, the HBS (Hogere Burgerschool), the Dutch variant of the German Realschule, became the dominant school of thought for mathematics pedagogy. This book examines the gradual development of the field, culminating in the country-wide adoption of Realistic Mathematics Education as the new method of mathematics teaching. This book is important for anyone who is interested in the history of mathematics education. It provides an interesting perspective on the development of mathematics education in a country that, in many aspects, went its own way.