Download Free Diffusion Driven Wavelet Design For Shape Analysis Book in PDF and EPUB Free Download. You can read online Diffusion Driven Wavelet Design For Shape Analysis and write the review.

From Design Methods and Generation Schemes to State-of-the-Art Applications Wavelets are powerful tools for functional analysis and geometry processing, enabling researchers to determine the structure of data and analyze 3D shapes. Suitable for researchers in computer graphics, computer vision, visualization, medical imaging, and geometric modeling as well as graduate and senior undergraduate students in computer science, Diffusion-Driven Wavelet Design for Shape Analysis presents recent research results in wavelet designs on 3D shapes and their applications in shape analysis. It explains how to apply the design methods to various types of 3D data, such as polygonal meshes, point clouds, manifolds, and volumetric images. Extensions of Wavelet Generation on Volumetric and Manifold Data The first part of the book introduces design methods of wavelets on manifold data, incorporating interdisciplinary knowledge from differential geometry, functional analysis, Fourier transform, spectral graph theory, and stochastic processes. The authors show how wavelets are purely determined by the shape geometry and how wavelet transforms are computed as inner products of wavelet kernels and input functions. Wavelets for Solving Computer Graphics Problems The second part presents applications in shape analysis/representation. The book looks at wavelets as spectral tools for geometry processing with filters in a joint space-frequency domain and examines wavelets as detail extractors for shape feature definition and detection. Going beyond these fundamental applications, the book also covers middle- and high-level applications, including shape matching, shape registration, and shape retrieval. Easy-to-Understand Implementations and Algorithms Unlike many other wavelet books, this one does not involve complicated mathematics. Instead, the book uses simplified formulations and illustrative examples to explain deep theories. Code and other materials are available on a supplementary website.
Mathematical Methods for Signal and Image Analysis and Representation presents the mathematical methodology for generic image analysis tasks. In the context of this book an image may be any m-dimensional empirical signal living on an n-dimensional smooth manifold (typically, but not necessarily, a subset of spacetime). The existing literature on image methodology is rather scattered and often limited to either a deterministic or a statistical point of view. In contrast, this book brings together these seemingly different points of view in order to stress their conceptual relations and formal analogies. Furthermore, it does not focus on specific applications, although some are detailed for the sake of illustration, but on the methodological frameworks on which such applications are built, making it an ideal companion for those seeking a rigorous methodological basis for specific algorithms as well as for those interested in the fundamental methodology per se. Covering many topics at the forefront of current research, including anisotropic diffusion filtering of tensor fields, this book will be of particular interest to graduate and postgraduate students and researchers in the fields of computer vision, medical imaging and visual perception.
The first book to provide a detailed discussion of the application of wavelets in wireless communications, this is an invaluable source of information for graduate students, researchers, and telecommunications engineers, managers and strategists. It overviews applications, explains how to design new wavelets and compares wavelet technology with existing OFDM technology. • Addresses the applications and challenges of wavelet technology for a range of wireless communication domains • Aids in the understanding of Wavelet Packet Modulation and compares it with OFDM • Includes tutorials on convex optimisation, spectral factorisation and the design of wavelets • Explains design methods for new wavelet technologies for wireless communications, addressing many challenges, such as peak-to-average power ratio reduction, interference mitigation, reduction of sensitivity to time, frequency and phase offsets, and efficient usage of wireless resources • Describes the application of wavelet radio in spectrum sensing of cognitive radio systems.
Issues for 1973- cover the entire IEEE technical literature.
This book constitutes the refereed proceedings of the 9th International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2012, held in Houston, TX, USA during in July 2012. The 16 revised full papers presented were carefully reviewed and selected from 23 submissions. The papers are organized in topical sections on relativistic heavy ions and DNA damage; image segmentation; proteomics; RNA and DNA sequence analysis; RNA, DNA, and SNP microarrays; semi-supervised/unsupervised cluster analysis.
Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.
Applications of wavelet analysis to the geophysical sciences grew from Jean Morlet's work on seismic signals in the 1980s. Used to detect signals against noise, wavelet analysis excels for transients or for spatiallylocalized phenomena. In this fourth volume in the renown WAVELET ANALYSIS AND ITS APPLICATIONS Series, Efi Foufoula-Georgiou and Praveen Kumar begin with a self-contained overview of the nature, power, and scope of wavelet transforms. The eleven originalpapers that follow in this edited treatise show how geophysical researchers are using wavelets to analyze such diverse phenomena as intermittent atmospheric turbulence, seafloor bathymetry, marine and other seismic data, and flow in aquifiers. Wavelets in Geophysics will make informative reading for geophysicists seeking an up-to-date account of how these tools are being used as well as for wavelet researchers searching for ideas for applications, or even new points of departure. Includes twelve original papers written by experts in the geophysical sciences Provides a self-contained overview of the nature, power, and scope of wavelet transforms Presents applications of wavelets to geophysical phenomena such as: The sharp events of seismic data, Long memory processes, such as fluctuation in the level of the Nile, A structure preserving decomposition of turbulence signals
Fuzzy systems and data mining are indispensible aspects of the digital technology on which we now all depend. Fuzzy logic is intrinsic to applications in the electrical, chemical and engineering industries, and also in the fields of management and environmental issues. Data mining is indispensible in dealing with big data, massive data, and scalable, parallel and distributed algorithms. This book presents the proceedings of FSDM 2023, the 9th International Conference on Fuzzy Systems and Data Mining, held from 10-13 November 2023 as a hybrid event, with some participants attending in Chongqing, China, and others online. The conference focuses on four main areas: fuzzy theory, algorithms and systems; fuzzy application; data mining; and the interdisciplinary field of fuzzy logic and data mining, and provides a forum for experts, researchers, academics and representatives from industry to share the latest advances in the field of fuzzy sets and data mining. This year, topics from two special sessions on granular-ball computing and the application of generative AI, as well as machine learning and neural networks, were also covered. A total of 363 submissions were received, and after careful review by the members of the international program committee, 110 papers were accepted for presentation at the conference and publication here, representing an acceptance rate of just over 30%. Covering a comprehensive range of current research and developments in fuzzy logic and data mining, the book will be of interest to all those working in the field of data science.
Innovations in computer vision technology continue to advance the applications and design of image processing and its influence on multimedia applications. Intelligent Computer Vision and Image Processing: Innovation, Application, and Design provides methods and research on various disciplines related to the science and technology of machines. This reference source is essential for academicians, researchers, and practitioners interested in the latest developments and innovations in computer science, education, and security.