Download Free Diffusion And Reactions In Fractals And Disordered Systems Book in PDF and EPUB Free Download. You can read online Diffusion And Reactions In Fractals And Disordered Systems and write the review.

This book describes diffusion and transport in disordered media such as fractals and random resistor networks.
Investigation of the fractal and scaling properties of disordered systems has recently become a focus of great interest in research. Disordered or amorphous materials, like glasses, polymers, gels, colloids, ceramic superconductors and random alloys or magnets, do not have a homogeneous microscopic structure. The microscopic environment varies randomly from site to site in the system and this randomness adds to the complexity and the richness of the properties of these materials. A particularly challenging aspect of random systems is their dynamical behavior. Relaxation in disordered systems generally follows an unusual time-dependent trajectory. Applications of scaling and fractal concepts in disordered systems have become a broad area of interdisciplinary research, involving studies of the physics, chemistry, mathematics, biology and engineering aspects of random systems. This book is intended for specialists as well as graduate and postdoctoral students working in condensed-matter or statistical physics. It provides state-of-the-art information on the latest developments in this important and timely topic. The book is divided into three parts: Part I deals with critical phenomena, Part II is devoted to discussion of slow dynamics and Part III involves the application of scaling concepts to random systems. The effects of disorder at the mesoscopic scale as well as the latest results on the dynamical properties of disordered systems are presented. In particular, recent developments in static and dynamic scaling theories and applications of fractal concepts to disordered systems are discussed.
Fractals and disordered systems have recently become the focus of intense interest in research. This book discusses in great detail the effects of disorder on mesoscopic scales (fractures, aggregates, colloids, surfaces and interfaces, glasses, and polymers) and presents tools to describe them in mathematical language. A substantial part is devoted to the development of scaling theories based on fractal concepts. In 10 chapters written by leading experts in the field, including E. Stanley and B. Mandelbrot, the reader is introduced to basic concepts and techniques in disordered systems and is lead to the forefront of current research. In each chapter the connection between theory and experiment is emphasized, and a special chapter entitled "Fractals and Experiments" presents experimental studies of fractal systems in the laboratory. The book is written pedagogically. It can be used as a textbook for graduate students, by university teachers to prepare courses and seminars, and by active scientists who want to become familiar with a fascinating new field.
Fractal dynamics provide an unparalleled tool for understanding the evolution of natural complexity throughout physical, biological, and psychological realms. This book’s conceptual framework helps to reconcile several persistent dichotomies in the natural sciences, including mind-brain, linear-nonlinear, subjective-objective, and even personal-transpersonal processes. A fractal approach is especially useful when applied to recursive processes of consciousness, both within their ordinary and anomalous manifestations. This novel way to study the interconnection of seemingly divided wholes encompasses multiple dimensions of experience and being. It brings together experts in diverse fields—neuropsychologists, psychiatrists, physicists, physiologists, psychoanalysts, mathematicians, and professors of religion and music composition—to demonstrate the value of fractals as model, method, and metaphor within psychology and related social and physical sciences. The result is a new perspective for understanding what has often been dismissed as too subjective, idiosyncratic, and ineffably beyond the scope of science, bringing these areas back into a natural-scientific framework.
This book is an introduction to the dynamics of reaction-diffusion systems, with a focus on fronts and stationary spatial patterns. Emphasis is on systems that are non-standard in the sense that either the transport is not simply classical diffusion (Brownian motion) or the system is not homogeneous. A important feature is the derivation of the basic phenomenological equations from the mesoscopic system properties. Topics addressed include transport with inertia, described by persistent random walks and hyperbolic reaction-transport equations and transport by anomalous diffusion, in particular subdiffusion, where the mean square displacement grows sublinearly with time. In particular reaction-diffusion systems are studied where the medium is in turn either spatially inhomogeneous, compositionally heterogeneous or spatially discrete. Applications span a vast range of interdisciplinary fields and the systems considered can be as different as human or animal groups migrating under external influences, population ecology and evolution, complex chemical reactions, or networks of biological cells. Several chapters treat these applications in detail.
The present book is an outcome of the SERC school on Computational Statistical Physics held at the Indian Institute of Technology, Guwahati, in December 2008. Numerical experimentation has played an extremely important role in statistical physics in recent years. Lectures given at the School covered a large number of topics of current and continuing interest. Based on lectures by active researchers in the field- Bikas Chakrabarti, S Chaplot, Deepak Dhar, Sanjay Kumar, Prabal Maiti, Sanjay Puri, Purusattam Ray, Sitangshu Santra and Subir Sarkar- the nine chapters comprising the book deal with topics that range from the fundamentals of the field, to problems and questions that are at the very forefront of current research. This book aims to expose the graduate student to the basic as well as advanced techniques in computational statistical physics. Following a general introduction to statistical mechanics and critical phenomena, the various chapters cover Monte Carlo and molecular dynamics simulation methodology, along with a variety of applications. These include the study of coarsening phenomena and diffusion in zeolites. /p In addition, graphical enumeration techniques are covered in detail with applications to percolation and polymer physics, and methods for optimisation are also discussed. Beginning graduate students and young researchers in the area of statistical physics will find the book useful. In addition, this will also be a valuable general reference for students and researchers in other areas of science and engineering.
This book presents simple interdisciplinary stochastic models meant as a gentle introduction to the field of non-equilibrium statistical physics. It focuses on the analysis of two-state models with cooperative effects, which are versatile enough to be applied to many physical and social systems. The book also explores a variety of mathematical techniques to solve the master equations that govern these models: matrix theory, empty-interval methods, mean field theory, a quantum approach, and mapping onto classical Ising models. The models discussed are at the confluence of nanophysics, biology, mathematics, and the social sciences and provide a pedagogical path toward understanding the complex dynamics of particle self-assembly with the tools of statistical physics.
This book aims to provide the readers with a wide panorama of different aspects related to Chaos, Complexity and Transport. It consists of a collection of contributions ranging from applied mathematics to experiments, presented during the CCT'07 conference (Marseilles, June 4-8, 2007). The book encompasses different traditional fields of physics and mathematics while trying to keep a common language among the fields, and targets a nonspecialized audience.
The fabrication of an integrated circuit requires a variety of physical and chemical processes to be performed on a semiconductor substrate. In general, these processes fall into three categories: film deposition, patterning, and semiconductor doping. Films of both conductors and insulators are used to connect and isolate transistors and their components. By creating structures of these various components millions of transistors can be built and wired together to form the complex circuitry of modern microelectronic devices. Fundamental to all of these processes is lithography, ie, the formation of three-dimensional relief images on the substrate for subsequent transfer of the pattern to the substrate. This book presents a complete theoretical and practical treatment of the topic of lithography for both students and researchers. It comprises ten detailed chapters plus three appendices with problems provided at the end of each chapter. Additional Information: Visiting http://www.lithoguru.com/textbook/index.html enhances the reader's understanding as the website supplies information on how you can download a free laboratory manual, Optical Lithography Modelling with MATLAB®, to accompany the textbook. You can also contact the author and find help for instructors.
This book addresses different applied problems in order to demonstrate the feasibility of fractional calculus’ use, irrespective of the type of memory kernels used, to model varieties of natural phenomena and new processes emerging in advanced technologies. In this context, the book’s focus is on modelling, adequate results, and interpretations, rather than theorems and proofs. The book includes a total of 12 chapters, representing various aspects of applied fractional modelling and covering important issues in modern technologies to provide a better understanding of applications of fractional calculus in applied modelling. The book will be a versatile source of information for undergraduate and graduate students, and for scientists involved in modelling of nonlinear and hereditary phenomena.