Download Free Differential Games A Concise Introduction Book in PDF and EPUB Free Download. You can read online Differential Games A Concise Introduction and write the review.

This book uses a small volume to present the most basic results for deterministic two-person differential games. The presentation begins with optimization of a single function, followed by a basic theory for two-person games. For dynamic situations, the author first recalls control theory which is treated as single-person differential games. Then a systematic theory of two-person differential games is concisely presented, including evasion and pursuit problems, zero-sum problems and LQ differential games. The book is intended to be self-contained, assuming that the readers have basic knowledge of calculus, linear algebra, and elementary ordinary differential equations. The readership of the book could be junior/senior undergraduate and graduate students with majors related to applied mathematics, who are interested in differential games. Researchers in some other related areas, such as engineering, social science, etc. will also find the book useful.
This book uses a small volume to present the most basic results for deterministic two-person differential games. The presentation begins with optimization of a single function, followed by a basic theory for two-person games. For dynamic situations, the author first recalls control theory which is treated as single-person differential games. Then a systematic theory of two-person differential games is concisely presented, including evasion and pursuit problems, zero-sum problems and LQ differential games.The book is intended to be self-contained, assuming that the readers have basic knowledge of calculus, linear algebra, and elementary ordinary differential equations. The readership of the book could be junior/senior undergraduate and graduate students with majors related to applied mathematics, who are interested in differential games. Researchers in some other related areas, such as engineering, social science, etc. will also find the book useful.
First-rate introduction for undergraduates examines first order equations, complex-valued solutions, linear differential operators, the Laplace transform, Picard's existence theorem, and much more. Includes problems and solutions.
This book gathers the most essential results, including recent ones, on linear-quadratic optimal control problems, which represent an important aspect of stochastic control. It presents results for two-player differential games and mean-field optimal control problems in the context of finite and infinite horizon problems, and discusses a number of new and interesting issues. Further, the book identifies, for the first time, the interconnections between the existence of open-loop and closed-loop Nash equilibria, solvability of the optimality system, and solvability of the associated Riccati equation, and also explores the open-loop solvability of mean-filed linear-quadratic optimal control problems. Although the content is largely self-contained, readers should have a basic grasp of linear algebra, functional analysis and stochastic ordinary differential equations. The book is mainly intended for senior undergraduate and graduate students majoring in applied mathematics who are interested in stochastic control theory. However, it will also appeal to researchers in other related areas, such as engineering, management, finance/economics and the social sciences.
The book focuses on Pareto optimality in cooperative games. Most of the existing works focus on the Pareto optimality of deterministic continuous-time systems or for the regular convex LQ case. To expand on the available literature, we explore the existence conditions of Pareto solutions in stochastic differential game for more general cases. In addition, the LQ Pareto game for stochastic singular systems, Pareto-based guaranteed cost control for uncertain mean-field stochastic systems, and the existence conditions of Pareto solutions in cooperative difference game are also studied in detail. Addressing Pareto optimality for more general cases and wider systems is one of the major features of the book, making it particularly suitable for readers who are interested in multi-objective optimal control. Accordingly, it offers a valuable asset for researchers, engineers, and graduate students in the fields of control theory and control engineering, economics, management science, mathematics, etc.
This brief modern introduction to the subject of ordinary differential equations emphasizes stability theory. Concisely and lucidly expressed, it is intended as a supplementary text for advanced undergraduates or beginning graduate students who have completed a first course in ordinary differential equations. The author begins by developing the notions of a fundamental system of solutions, the Wronskian, and the corresponding fundamental matrix. Subsequent chapters explore the linear equation with constant coefficients, stability theory for autonomous and nonautonomous systems, and the problems of the existence and uniqueness of solutions and related topics. Problems at the end of each chapter and two Appendixes on special topics enrich the text.
This volume collects papers, based on invited talks given at the IMA workshop in Modeling, Stochastic Control, Optimization, and Related Applications, held at the Institute for Mathematics and Its Applications, University of Minnesota, during May and June, 2018. There were four week-long workshops during the conference. They are (1) stochastic control, computation methods, and applications, (2) queueing theory and networked systems, (3) ecological and biological applications, and (4) finance and economics applications. For broader impacts, researchers from different fields covering both theoretically oriented and application intensive areas were invited to participate in the conference. It brought together researchers from multi-disciplinary communities in applied mathematics, applied probability, engineering, biology, ecology, and networked science, to review, and substantially update most recent progress. As an archive, this volume presents some of the highlights of the workshops, and collect papers covering a broad range of topics.
This book features the latest theoretical results and techniques in the field of guidance, navigation, and control (GNC) of vehicles and aircraft. It covers a range of topics, including, but not limited to, intelligent computing communication and control; new methods of navigation, estimation, and tracking; control of multiple moving objects; manned and autonomous unmanned systems; guidance, navigation, and control of miniature aircraft; and sensor systems for guidance, navigation, and control. Presenting recent advances in the form of illustrations, tables, and text, it also provides detailed information of a number of the studies, to offer readers insights for their own research. In addition, the book addresses fundamental concepts and studies in the development of GNC, making it a valuable resource for both beginners and researchers wanting to further their understanding of guidance, navigation, and control.
This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.