Download Free Different Perspectives On Wavelets Book in PDF and EPUB Free Download. You can read online Different Perspectives On Wavelets and write the review.

The wavelet transform can be seen as a synthesis of ideas that have emerged since the 1960s in mathematics, physics, and electrical engineering. The basic idea is to use a family of 'building blocks' to represent in an efficient way the object at hand, be it a function, an operator, a signal, or an image. The building blocks themselves come in different 'sizes' which can describe different features with different resolutions. The papers in this book attempt to give some theoretical and technical shape to this intuitive picture of wavelets and their uses. The papers collected here were prepared for an AMS Short Course on Wavelets and Applications, held at the Joint Mathematics Meetings in San Antonio in January 1993.Here readers will find general background on wavelets as well as more detailed views of specific techniques and applications. With contributions by some of the top experts in the field, this book provides an excellent introduction to this important and growing area of research.
The wavelet transform can be seen as a synthesis of ideas that have emerged since the 1960s in mathematics, physics, and electrical engineering. The basic idea is to use a family of ``building blocks'' to represent in an efficient way the object at hand, be it a function, an operator, a signal, or an image. The building blocks themselves come in different ``sizes'' which can describe different features with different resolutions. The papers in this book attempt to give some theoretical and technical shape to this intuitive picture of wavelets and their uses. The papers collected here were prepared for an AMS Short Course on Wavelets and Applications, held at the Joint Mathematics Meetings in San Antonio in January 1993. Here readers will find general background on wavelets as well as more detailed views of specific techniques and applications. With contributions by some of the top experts in the field, this book provides an excellent introduction to this important and growing area of research.
Wavelets continue to be powerful mathematical tools that can be used to solve problems for which the Fourier (spectral) method does not perform well or cannot handle. This book is for engineers, applied mathematicians, and other scientists who want to learn about using wavelets to analyze, process, and synthesize images and signals. Applications are described in detail and there are step-by-step instructions about how to construct and apply wavelets. The only mathematically rigorous monograph written by a mathematician specifically for nonspecialists, it describes the basic concepts of these mathematical techniques, outlines the procedures for using them, compares the performance of various approaches, and provides information for problem solving, putting the reader at the forefront of current research.
Wavelet Analysis and its Applications, Volume 1: An Introduction to Wavelets provides an introductory treatise on wavelet analysis with an emphasis on spline-wavelets and time-frequency analysis. This book is divided into seven chapters. Chapter 1 presents a brief overview of the subject, including classification of wavelets, integral wavelet transform for time-frequency analysis, multi-resolution analysis highlighting the important properties of splines, and wavelet algorithms for decomposition and reconstruction of functions. The preliminary material on Fourier analysis and signal theory is covered in Chapters 2 and 3. Chapter 4 covers the introductory study of cardinal splines, while Chapter 5 describes a general approach to the analysis and construction of scaling functions and wavelets. Spline-wavelets are deliberated in Chapter 6. The last chapter is devoted to an investigation of orthogonal wavelets and wavelet packets. This volume serves as a textbook for an introductory one-semester course on "wavelet analysis for upper-division undergraduate or beginning graduate mathematics and engineering students.
Wavelets are a mathematical development that may revolutionize the world of information storage and retrieval according to many experts. They are a fairly simple mathematical tool now being applied to the compression of data--such as fingerprints, weather satellite photographs, and medical x-rays--that were previously thought to be impossible to condense without losing crucial details. This monograph contains 10 lectures presented by Dr. Daubechies as the principal speaker at the 1990 CBMS-NSF Conference on Wavelets and Applications. The author has worked on several aspects of the wavelet transform and has developed a collection of wavelets that are remarkably efficient.
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory of coherent states, wavelets, and some of their generalizations, it emphasizes mathematical principles, subsuming the theories of both wavelets and coherent states into a single analytic structure. The approach allows the user to take a classical-like view of quantum states in physics. Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altogether. In this context, wavelets can be generated from coherent states of the affine group of the real line, and higher-dimensional wavelets arise from coherent states of other groups. The unified background makes transparent an entire range of properties of wavelets and coherent states. Many concrete examples, such as coherent states from semisimple Lie groups, Gazeau-Klauder coherent states, coherent states for the relativity groups, and several kinds of wavelets, are discussed in detail. The book concludes with a palette of potential applications, from the quantum physically oriented, like the quantum-classical transition or the construction of adequate states in quantum information, to the most innovative techniques to be used in data processing. Intended as an introduction to current research for graduate students and others entering the field, the mathematical discussion is self-contained. With its extensive references to the research literature, the first edition of the book is already a proven compendium for physicists and mathematicians active in the field, and with full coverage of the latest theory and results the revised second edition is even more valuable.
Most existing books on wavelets are either too mathematical or they focus on too narrow a specialty. This book provides a thorough treatment of the subject from an engineering point of view. It is a one-stop source of theory, algorithms, applications, and computer codes related to wavelets. This second edition has been updated by the addition of: a section on "Other Wavelets" that describes curvelets, ridgelets, lifting wavelets, etc a section on lifting algorithms Sections on Edge Detection and Geophysical Applications Section on Multiresolution Time Domain Method (MRTD) and on Inverse problems
This unique resource examines the conceptual, computational, and practical aspects of applied signal processing using wavelets. With this book, readers will understand and be able to use the power and utility of new wavelet methods in science and engineering problems and analysis. The text is written in a clear, accessible style avoiding unnecessary abstractions and details. From a computational perspective, wavelet signal processing algorithms are presented and applied to signal compression, noise suppression, and signal identification. Numerical illustrations of these computational techniques are further provided with interactive software (MATLAB code) that is available on the World Wide Web. Topics and Features Continuous wavelet and Gabor transforms Frame-based theory of discretization and reconstruction of analog signals is developed New and efficient "overcomplete" wavelet transform is introduced and applied Numerical illustrations with an object-oriented computational perspective using the Wavelet Signal Processing Workstation (MATLAB code) available This book is an excellent resource for information and computational tools needed to use wavelets in many types of signal processing problems. Graduates, professionals, and practitioners in engineering, computer science, geophysics, and applied mathematics will benefit from using the book and software tools. The present, softcover reprint is designed to make this classic textbook available to a wider audience. A self-contained text that is theoretically rigorous while maintaining contact with interesting applications. A particularly noteworthy topic...is a class of ‘overcomplete wavelets’. These functions are not orthonormal and they lead to many useful results. —Journal of Mathematical Psychology