Download Free Different Forms Of Triangular Neutrosophic Numbers De Neutrosophication Techniques And Their Applications Book in PDF and EPUB Free Download. You can read online Different Forms Of Triangular Neutrosophic Numbers De Neutrosophication Techniques And Their Applications and write the review.

In this paper, we introduce the concept of neutrosophic number from different viewpoints. We define different types of linear and non-linear generalized triangular neutrosophic numbers which are very important for uncertainty theory. We introduced the de-neutrosophication concept for neutrosophic number for triangular neutrosophic numbers. This concept helps us to convert a neutrosophic number into a crisp number. The concepts are followed by two application, namely in imprecise project evaluation review technique and route selection problem.
Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set. This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc.
The postulation of neutrosophic numbers has been analyzed from different angles in this paper. In this current era, our main purpose is to mention Decagonal Neutrosophic numbers. The types of linear and non-linear generalized decagonal neutrosophic numbers play a very critical role in the theory related to uncertainty This approach is helpful in getting a crisp number from a neutrosophic number. The definitions regarding Linear, Non-Linear, symmetry, Asymmetry, alpha cuts have been introduced and large decision-making problems using fuzzy TOPSIS have been solved.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).
This book addresses new concepts, methods, algorithms, modeling, and applications of green supply chain, inventory control problems, assignment problems, transportation problem, linear problems and new information related to optimization for the topic from the theoretical and applied viewpoints of neutrosophic sets and logic. The book is an innovatory of new tools and procedures, such as: Neutrosophic Statistical Tests and Dependent State Samplings, Neutrosophic Probabilistic Expert Systems, Neutrosophic HyperSoft Set, Quadripartitioned Neutrosophic Cross-Entropy, Octagonal and Spherical and Cubic Neutrosophic Numbers used in machine learning. It highlights the process of neutrosofication {which means to split the universe into three parts, two opposite ones (Truth and Falsehood), and an Indeterminate or neutral one (I) in between them}. It explains Three-Ways Decision, how the universe set is split into three different distinct areas, in regard to the decision process, representing: Acceptance, Noncommitment, and Rejection, respectively. The Three-Way Decision is used in the Neutrosophic Linguistic Rough Set, which has never been done before.
International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. IJNS is published quarterly. IJNS is devoted to the publication of peer-reviewed original research papers lying in the domain of neutrosophic sets and systems. Papers submitted for possible publication may concern with foundations, neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributing to economics, finance, management, industries, electronics, and communications are promoted.
International Journal of Neutrosophic Science (IJNS) is a peer-review journal publishing high quality experimental and theoretical research in all areas of Neutrosophic and its Applications. IJNS is published quarterly. IJNS is devoted to the publication of peer-reviewed original research papers lying in the domain of neutrosophic sets and systems. Papers submitted for possible publication may concern with foundations, neutrosophic logic and mathematical structures in the neutrosophic setting. Besides providing emphasis on topics like artificial intelligence, pattern recognition, image processing, robotics, decision making, data analysis, data mining, applications of neutrosophic mathematical theories contributing to economics, finance, management, industries, electronics, and communications are promoted.
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Neutrosophic Soft Fixed Points, Selection of Alternative under the Framework of Single-Valued Neutrosophic Sets, Application of Single Valued Trapezoidal Neutrosophic Numbers in Transportation Problem.
Contributors to current issue (listed in papers’ order): Ibrahim Yasser, Abeer Twakol, A. A. Abd El-Khalek, A. A. Salama, Ahmed Sharaf Al-Din, Issam Abu Al-Qasim, Rafif Alhabib, Magdy Badran, Remya P. B, Francina Shalini, Masoud Ghods, Zahra Rostami, A. Sahaya Sudha, Luiz Flavio Autran Monteiro Gomes, K.R. Vijayalakshmi, Prakasam Muralikrishna, Surya Manokaran, Nidhi Singh, Avishek Chakraborty, Soma Bose Biswas, Malini Majumdar, Rakhal Das, Binod Chandra Tripathy, Nidhi Singh, Avishek Chakraborty, Nilabhra Paul, Deepshikha Sarma, Akash Singh, Uttam Kumar Bera, Fatimah M. Mohammed, Sarah W. Raheem, Muhammad Riaz, Florentin Smarandache, Faruk Karaaslan, Masooma Raza Hashmi, Iqra Nawaz, Kousik Das, Sovan Samanta, Kajal De, Xavier Encarnacion, Nivetha Martin, I. Pradeepa, N. Ramila Gandhi, P. Pandiammal, Aiman Muzaffar, Md Tabrez Nafis, Shahab Saquib Sohail, Abhijit Saha, Jhulaneswar Baidya, Debjit Dutta, Irfan Deli, Said Broumi, Mohsin Khalid, Neha Andaleeb Khalid, Md. Hanif Page, Qays Hatem Imran, Shilpi Pal, S. Satham Hussain, Saeid Jafari, N. Durga, Hanieh Shambayati, Mohsen Shafiei Nikabadi, Seyed Mohammad, Ali Khatami Firouzabadi, Mohammad Rahmanimanesh, Mujahid Abbas, Ghulam Murtaza, K. Porselvi, B. Elavarasan, Y. B. Jun, Chinnadurai V, Sindhu M P, K.Radhika, K. Arun Prakash, Malayalan Lathamaheswari, Ruipu Tan, Deivanayagampillai Nagarajan, Talea Mohamed, Assia Bakali, Nivetha Martin, R. Dhavaseelan, Ali Hussein Mahmood Al-Obaidi, Suman Das, Surapati Pramanik, Madad Khan, Muhammad Zeeshan, Saima Anis, Abdul Sami Awan, M. Sarwar Sindhu, Tabasam Rashid, Agha Kashif, Rajesh Kumar Saini, Atul Sangal, Manisha.