Download Free Dielectric Material Integration For Microelectronics Book in PDF and EPUB Free Download. You can read online Dielectric Material Integration For Microelectronics and write the review.

Semiconductor technologies are moving at such a fast pace that new materials are needed in all types of application. Manipulating the materials and their properties at atomic dimensions has become a must. This book presents the case of interlayer dielectrics materials whilst considering these challenges. Interlayer Dielectrics for Semiconductor Technologies cover the science, properties and applications of dielectrics, their preparation, patterning, reliability and characterisation, followed by the discussion of different materials including those with high dielctric constants and those useful for waveguide applications in optical communications on the chip and the package.* Brings together for the FIRST time the science and technology of interlayer deilectrics materials, in one volume* written by renowned experts in the field* Provides an up-to-date starting point in this young research field.
The topic of thin films is an area of increasing importance in materials science, electrical engineering and applied solid state physics; with both research and industrial applications in microelectronics, computer manufacturing, and physical devices. Advanced, high-performance computers, high-definition TV, broadband imaging systems, flat-panel displays, robotic systems, and medical electronics and diagnostics are a few examples of the miniaturized device technologies that depend on the utilization of thin film materials. This book presents an in-depth overview of the novel developments made by the scientific leaders in the area of modern dielectric films for advanced microelectronic applications. It contains clear, concise explanations of material science of dielectric films and their problem for device operation, including high-k, low-k, medium-k dielectric films and also specific features and requirements for dielectric films used in the packaging technology. A broad range of related topics are covered, from physical principles to design, fabrication, characterization, and applications of novel dielectric films.
Low dielectric constant materials are an important component of microelectronic devices. This comprehensive book covers the latest low-dielectric-constant (low-k) materials technology, thin film materials characterization, integration and reliability for back-end interconnects and packaging applications in microelectronics. Highly informative contributions from leading academic and industrial laboratories provide comprehensive information about materials technologies for
Issues relating to the high-K gate dielectric are among the greatest challenges for the evolving International Technology Roadmap for Semiconductors (ITRS). More than just an historical overview, this book will assess previous and present approaches related to scaling the gate dielectric and their impact, along with the creative directions and forthcoming challenges that will define the future of gate dielectric scaling technology. Topics include: an extensive review of Moore's Law, the classical regime for SiO2 gate dielectrics; the transition to silicon oxynitride gate dielectrics; the transition to high-K gate dielectrics (including the drive towards equivalent oxide thickness in the single-digit nanometer regime); and future directions and issues for ultimate technology generation scaling. The vision, wisdom, and experience of the team of authors will make this book a timely, relevant, and interesting, resource focusing on fundamentals of the 45 nm Technology Generation and beyond.
This book attempts to bring together the theory and practice of dielectric materials for different kind of industrial applications. Fragmented information on dielectric theory and properties of materials, design of equipment and state of the art in applications relevant to the manufacturing industry should be collated and updated and presented as a single reference volume. In this book relevant and useful information is presented in the quoted literature and covered by our key patent applications.
Recent developments in microelectronics technologies have created a great demand for interlayer dielectric materials with a very low dielectric constant. They will play a crucial role in the future generation of IC devices (VLSI/UISI and high speed IC packaging). Considerable efforts have been made to develop new low as well as high dielectric constant materials for applications in electronics industries. Besides achieving either low or high dielectric constants, other materials' properties such as good processability, high mechanical strength, high thermal and environmental stability, low thermal expansion, low current leakage, low moisture absorption, corrosion resistant, etc., are of equal importance. Many chemical and physical strategies have been employed to get desired dielectric materials with high performance. This is a rapidly growing field of science--both in novel materials and their applications to future packing technologies. The experimental data on inorganic and organic materials having low or high dielectric constant remail scattered in the literature. It is timely, therfore, to consolidate the current knowledge on low and high dielectric constant materials into a sigle reference source. Handbook of Low and High Dielectric Constant Materials and Their Applications is aimed at bringing together under a sigle cover (in two volumes) all low and high dielectric constant materials currently studied in academic and industrial research covering all spects of inorgani an organic materials from their synthetic chemistry, processing techniques, physics, structure-property relationship to applications in IC devices. This book will summarize the current status of the field covering important scientific developments made over the past decade with contributions from internationally recognized experts from all over the world. Fully cross-referenced, this book has clear, precise, and wide appeal as an essential reference source for all those interested in low and high dielectric constant material.
"Papers presented at the First International Symposium on Science and Technology of Dielectrics in Emerging Fields, held from 27th April to 2nd May, 2003 in Paris, France"--Pref.
On September 10-13, 1990, the first international meeting on Microsystem Technologies takes place at the Berlin International Congress Center. Most of the traditional congresses deal with themes that become more and more specific, and only a small part of the scientific world is reflected. The Micro System Technologies is attempting to take the opposite direction: During the last two decades the development of microelectronics was characterized by a tremendous increase of complexity of integrated circuits. At the same time the fields of microoptics and micromechanics have been developed to an advanced state of the art by the application of thin film and semiconductor technologies. The trend of the future development is to increase the integration density by combining the microelectronic, microoptic, and micro mechanic aspects to new complex multifunctional systems, which are able to comprise sensors, actuators, analogue and digital circuits on the same chip or on multichip-modules. Microsystems will lead to extensions of the field of microelectronic applications with important technical alterations and can open new considerable markets. For the realization of economical solutions for microsystems a lot of interdisciplinary cooperation and know-how has to be developed. New materials for sensitive layers, substrates, conducting, semiconducting, or isolating thin films are the basis for the development of new technologies. The increasing complexity leads to increasing interaction among electrical and non-electrical quantities.
This book is a printed edition of the Special Issue "Integration of 2D Materials for Electronics Applications" that was published in Crystals