Download Free Diagnostics Of Rotating Machines In Power Plants Book in PDF and EPUB Free Download. You can read online Diagnostics Of Rotating Machines In Power Plants and write the review.

The papers presented on this occasion examined the most significant aspects of diagnostic strategies, emphasizing the importance of predictive maintenance in reducing production shortages and the costs of plant management. The contributions of these authors allow a critical comparison of the varied experiences in developing and applying the different diagnostic methodologies employed in several parts of the world. The following problems are discussed: characteristics of condition monitoring systems - data acquisition techniques and data processing methodologies; choice of transducers and of measurement point locations; data compression techniques; alarm levels evaluation (acceptance regions); strategies for detecting malfunction conditions; diagnostic methodologies for the on-line and off-line identification of the cause of fault; expert systems; definition of the guidelines for the presentation in control rooms of monitoring data and diagnostic results; rotordynamic models used, off-line, to confirm faults diagnosed on-line.
Cracks can develop in rotating shafts and can propagate to relevant depths without affecting consistently the normal operating conditions of the shaft. In order to avoid catastrophic failures, accurate vibration analyses have to be performed for crack detection. The identification of the crack location and depth is possible by means of a model based diagnostic approach, provided that the model of the crack and the model of the cracked shaft dynamical behavior are accurate and reliable. This monograph shows the typical dynamical behavior of cracked shafts and presents tests for detecting cracks. The book describes how to model cracks, how to simulate the dynamical behavior of cracked shaft, and compares the corresponding numerical with experimental results. All effects of cracks on the vibrations of rotating shafts are analyzed, and some results of a numerical sensitivity analysis of the vibrations to the presence and severity of the crack are shown. Finally the book describes some crack identification procedures and shows some results in model based crack identification in position and depth. The book is useful for higher university courses in mechanical and energetic engineering, but also for skilled technical people employed in power generation industries.
A fully expanded new edition documenting the significant improvements that have been made to the tests and monitors of electrical insulation systems Electrical Insulation for Rotating Machines: Design, Evaluation, Aging, Testing, and Repair, Second Edition covers all aspects in the design, deterioration, testing, and repair of the electrical insulation used in motors and generators of all ratings greater than fractional horsepower size. It discusses both rotor and stator windings; gives a historical overview of machine insulation design; and describes the materials and manufacturing methods of the rotor and stator winding insulation systems in current use (while covering systems made over fifty years ago). It covers how to select the insulation systems for use in new machines, and explains over thirty different rotor and stator winding failure processes, including the methods to repair, or least slow down, each process. Finally, it reviews the theoretical basis, practical application, and interpretation of forty different tests and monitors that are used to assess winding insulation condition, thereby helping machine users avoid unnecessary machine failures and reduce maintenance costs. Electrical Insulation for Rotating Machines: Documents the large array of machine electrical failure mechanisms, repair methods, and test techniques that are currently available Educates owners of machines as well as repair shops on the different failure processes and shows them how to fix or otherwise ameliorate them Offers chapters on testing, monitoring, and maintenance strategies that assist in educating machine users and repair shops on the tests needed for specific situations and how to minimize motor and generator maintenance costs Captures the state of both the present and past “art” in rotating machine insulation system design and manufacture, which helps designers learn from the knowledge acquired by previous generations An ideal read for researchers, developers, and manufacturers of electrical insulating materials for machines, Electrical Insulation for Rotating Machines will also benefit designers of motors and generators who must select and apply electrical insulation in machines.
Vibratory Condition Monitoring of Machines discusses the basic principles applicable in understanding the vibratory phenomena of rotating and reciprocating machines. It also addresses the defects that influence vibratory phenomenon, instruments and analysis procedures for maintenance, vibration related standards, and the expert systems that help ensure good maintenance programs. The author offers a minimal treatment of the mathematical aspects of the subject, focusing instead on imparting a physical understanding to help practicing engineers develop maintenance programs and operate machines efficiently.
This book offers professionals working at power plants guidelines and best practices for vibration problems, in order to help them identify the respective problem, grasp it, and successfully solve it. The book provides very little theoretical information (which is readily available in the existing literature) and doesn’t assume that readers have an extensive mathematical background; rather, it presents a range of well-documented, real-world case studies and examples drawn from the authors’ 50 years of experience at jobsites. Vibration problems don’t crop up very often, thanks to good maintenance and support, but if and when they do, most power plants have very little experience in assessing and solving them. Accordingly, the case studies discussed here will equip power plant engineers to quickly evaluate the vibration problem at hand (by deciding whether the machine is at risk or can continue operating) and find a practical solution.
This book is a compilation of selected papers from the Seventh Symposium on Digital Instrumentation and Control Technology for Nuclear Power Plant, held online on January 11, 2023. The purpose of this symposium is to discuss inspection, test, certification and research for the software and hardware of Instrumentation and Control (I&C) systems in nuclear power plants (NPP), such as sensors, actuators and control system. It provides a platform of technical exchange and experience sharing for those broad masses of experts and scholars and nuclear power practitioners. At the same time, it also provides a platform for the combination of production, teaching and research in universities and enterprises to promote the safe development of nuclear power plant. Readers will encounter new ideas for realizing a more efficient and safer instrumentation and control system.
The general aim of this book is to present selected chapters of the following types: chapters with more focus on modeling with some necessary simulation details and chapters with less focus on modeling but with more simulation details. This book contains eleven chapters divided into two sections: Modeling in Continuum Mechanics and Modeling in Electronics and Engineering. We hope our book entitled "Modeling and Simulation in Engineering - Selected Problems" will serve as a useful reference to students, scientists, and engineers.