Download Free Dft Domain Based Single Microphone Noise Reduction For Speech Enhancement Book in PDF and EPUB Free Download. You can read online Dft Domain Based Single Microphone Noise Reduction For Speech Enhancement and write the review.

As speech processing devices like mobile phones, voice controlled devices, and hearing aids have increased in popularity, people expect them to work anywhere and at any time without user intervention. However, the presence of acoustical disturbances limits the use of these applications, degrades their performance, or causes the user difficulties in understanding the conversation or appreciating the device. A common way to reduce the effects of such disturbances is through the use of single-microphone noise reduction algorithms for speech enhancement. The field of single-microphone noise reduction for speech enhancement comprises a history of more than 30 years of research. In this survey, we wish to demonstrate the significant advances that have been made during the last decade in the field of discrete Fourier transform domain-based single-channel noise reduction for speech enhancement.Furthermore, our goal is to provide a concise description of a state-of-the-art speech enhancement system, and demonstrate the relative importance of the various building blocks of such a system. This allows the non-expert DSP practitioner to judge the relevance of each building block and to implement a close-to-optimal enhancement system for the particular application at hand. Table of Contents: Introduction / Single Channel Speech Enhancement: General Principles / DFT-Based Speech Enhancement Methods: Signal Model and Notation / Speech DFT Estimators / Speech Presence Probability Estimation / Noise PSD Estimation / Speech PSD Estimation / Performance Evaluation Methods / Simulation Experiments with Single-Channel Enhancement Systems / Future Directions
As speech processing devices like mobile phones, voice controlled devices, and hearing aids have increased in popularity, people expect them to work anywhere and at any time without user intervention. However, the presence of acoustical disturbances limits the use of these applications, degrades their performance, or causes the user difficulties in understanding the conversation or appreciating the device. A common way to reduce the effects of such disturbances is through the use of single-microphone noise reduction algorithms for speech enhancement. The field of single-microphone noise reduction for speech enhancement comprises a history of more than 30 years of research. In this survey, we wish to demonstrate the significant advances that have been made during the last decade in the field of discrete Fourier transform domain-based single-channel noise reduction for speech enhancement.Furthermore, our goal is to provide a concise description of a state-of-the-art speech enhancement system, and demonstrate the relative importance of the various building blocks of such a system. This allows the non-expert DSP practitioner to judge the relevance of each building block and to implement a close-to-optimal enhancement system for the particular application at hand. Table of Contents: Introduction / Single Channel Speech Enhancement: General Principles / DFT-Based Speech Enhancement Methods: Signal Model and Notation / Speech DFT Estimators / Speech Presence Probability Estimation / Noise PSD Estimation / Speech PSD Estimation / Performance Evaluation Methods / Simulation Experiments with Single-Channel Enhancement Systems / Future Directions
This book first details a proposed Stationary Bionic Wavelet Transform (SBWT) for use in speech processing. The author then details the proposed techniques based on SBWT. These techniques are relevant to speech enhancement, speech recognition, and ECG de-noising. The techniques are then evaluated by comparing them to a number of methods existing in literature. For evaluating the proposed techniques, results are applied to different speech and ECG signals and their performances are justified from the results obtained from using objective criterion such as SNR, SSNR, PSNR, PESQ , MAE, MSE and more.
Learn the technology behind hearing aids, Siri, and Echo Audio source separation and speech enhancement aim to extract one or more source signals of interest from an audio recording involving several sound sources. These technologies are among the most studied in audio signal processing today and bear a critical role in the success of hearing aids, hands-free phones, voice command and other noise-robust audio analysis systems, and music post-production software. Research on this topic has followed three convergent paths, starting with sensor array processing, computational auditory scene analysis, and machine learning based approaches such as independent component analysis, respectively. This book is the first one to provide a comprehensive overview by presenting the common foundations and the differences between these techniques in a unified setting. Key features: Consolidated perspective on audio source separation and speech enhancement. Both historical perspective and latest advances in the field, e.g. deep neural networks. Diverse disciplines: array processing, machine learning, and statistical signal processing. Covers the most important techniques for both single-channel and multichannel processing. This book provides both introductory and advanced material suitable for people with basic knowledge of signal processing and machine learning. Thanks to its comprehensiveness, it will help students select a promising research track, researchers leverage the acquired cross-domain knowledge to design improved techniques, and engineers and developers choose the right technology for their target application scenario. It will also be useful for practitioners from other fields (e.g., acoustics, multimedia, phonetics, and musicology) willing to exploit audio source separation or speech enhancement as pre-processing tools for their own needs.
This book constitutes the proceedings of the 14th International Conference on Latent Variable Analysis and Signal Separation, LVA/ICA 2018, held in Guildford, UK, in July 2018.The 52 full papers were carefully reviewed and selected from 62 initial submissions. As research topics the papers encompass a wide range of general mixtures of latent variables models but also theories and tools drawn from a great variety of disciplines such as structured tensor decompositions and applications; matrix and tensor factorizations; ICA methods; nonlinear mixtures; audio data and methods; signal separation evaluation campaign; deep learning and data-driven methods; advances in phase retrieval and applications; sparsity-related methods; and biomedical data and methods.
This book constitutes the refereed proceedings of the Second International Conference, SLAAI-ICAI 2018, held in Moratuwa, Sri Lanka, in December 2018. The 32 revised full papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in the following topical sections: ​intelligence systems; neural networks; game theory; ontology engineering; natural language processing; agent based system; signal and image processing.
An overview on the challenging new topic of phase-aware signal processing Speech communication technology is a key factor in human-machine interaction, digital hearing aids, mobile telephony, and automatic speech/speaker recognition. With the proliferation of these applications, there is a growing requirement for advanced methodologies that can push the limits of the conventional solutions relying on processing the signal magnitude spectrum. Single-Channel Phase-Aware Signal Processing in Speech Communication provides a comprehensive guide to phase signal processing and reviews the history of phase importance in the literature, basic problems in phase processing, fundamentals of phase estimation together with several applications to demonstrate the usefulness of phase processing. Key features: Analysis of recent advances demonstrating the positive impact of phase-based processing in pushing the limits of conventional methods. Offers unique coverage of the historical context, fundamentals of phase processing and provides several examples in speech communication. Provides a detailed review of many references and discusses the existing signal processing techniques required to deal with phase information in different applications involved with speech. The book supplies various examples and MATLAB® implementations delivered within the PhaseLab toolbox. Single-Channel Phase-Aware Signal Processing in Speech Communication is a valuable single-source for students, non-expert DSP engineers, academics and graduate students.
The purpose of this Research Topic is to reflect and discuss links between neuroscience, psychology, computer science and robotics with regards to the topic of cross-modal learning which has, in recent years, emerged as a new area of interdisciplinary research. The term cross-modal learning refers to the synergistic synthesis of information from multiple sensory modalities such that the learning that occurs within any individual sensory modality can be enhanced with information from one or more other modalities. Cross-modal learning is a crucial component of adaptive behavior in a continuously changing world, and examples are ubiquitous, such as: learning to grasp and manipulate objects; learning to walk; learning to read and write; learning to understand language and its referents; etc. In all these examples, visual, auditory, somatosensory or other modalities have to be integrated, and learning must be cross-modal. In fact, the broad range of acquired human skills are cross-modal, and many of the most advanced human capabilities, such as those involved in social cognition, require learning from the richest combinations of cross-modal information. In contrast, even the very best systems in Artificial Intelligence (AI) and robotics have taken only tiny steps in this direction. Building a system that composes a global perspective from multiple distinct sources, types of data, and sensory modalities is a grand challenge of AI, yet it is specific enough that it can be studied quite rigorously and in such detail that the prospect for deep insights into these mechanisms is quite plausible in the near term. Cross-modal learning is a broad, interdisciplinary topic that has not yet coalesced into a single, unified field. Instead, there are many separate fields, each tackling the concerns of cross-modal learning from its own perspective, with currently little overlap. We anticipate an accelerating trend towards integration of these areas and we intend to contribute to that integration. By focusing on cross-modal learning, the proposed Research Topic can bring together recent progress in artificial intelligence, robotics, psychology and neuroscience.
Digital measurement of the analog acoustical parameters of a music performance hall is difficult. The aim of such work is to create a digital acoustical derivation that is an accurate numerical representation of the complex analog characteristics of the hall. The present study describes the exponential sine sweep (ESS) measurement process in the derivation of an acoustical impulse response function (AIRF) of three music performance halls in Canada. It examines specific difficulties of the process, such as preventing the external effects of the measurement transducers from corrupting the derivation, and provides solutions, such as the use of filtering techniques in order to remove such unwanted effects. In addition, the book presents a novel method of numerical verification through mean-squared error (MSE) analysis in order to determine how accurately the derived AIRF represents the acoustical behavior of the actual hall.
A strong reference on the problem of signal and speech enhancement, describing the newest developments in this exciting field. The general emphasis is on noise reduction, because of the large number of applications that can benefit from this technology.