Download Free Developments In Physiology Biochemistry And Molecular Biology Of Plants Book in PDF and EPUB Free Download. You can read online Developments In Physiology Biochemistry And Molecular Biology Of Plants and write the review.

The Volume 2 of the treatise on the Developments in Physiology, Biochemistry and Molecular Biology of Plants provides additional information in the crucial areas for making precise and applied research in the national context, on the one hand, and to unravel the science, on the other hand. In the earlier volume, the theme of publishing this needful treatise has been already made obvious. However, in view of the experiences and enormous advances in plant science research in the last few decades providing enough insight to scan vital research in this century has, almost certainly, enlightened the path to undertake necessary research projects for the benefit of mankind to which we are indispensably committed. We, the plant physiologists, biochemists, molecular biologists and plant nutritionists must be proud of our support to the world's farmers which has helped them make their achievement possible. In this century, up to 2025, the human population is expected to double and that is in truth a serious issue for us to trace out the limiting factors reducing yield potentiality of crop plants, on the one hand, and to understand the science of related processes at different levels, alternatively. This principally necessitates for elucidation of dimensions of environmental stresses in relation to crop plants and their genotypes, optimally suitable to prevailing stress conditions. Of course, in the last few decades more emphasis was laid in this direction and remarkable progress has been made at the global scale to meet the challenges. Owing to this, distinguished scientists have been consistently reviewing and synchronizing the manifold research and signifying specific research of basic and applied implication in classified segment. It is delightful to mention that our attempt to sufficiently provide the essential and comprehensive literature to speed up important research in explicit areas of plant sciences has been once again tremendously satisfactory due to exceptional dedication of illustrious Indian scientists in the preparation of this momentous work. This treatise has been ordered with twelve excellent contributions in the form of review articles by thirty well- known Indian workers and academicians. The reviews are relevant to guide for theme oriented research as well as for scientific future planning of research projects. The four applicable sections related to: I. Sustainable Crop Productivity, II. Recent Advances in Plant Metabolism; III. Molecular Physiology of Plants; IV. Environmental Stresses in Plants consist of over twelve meaningful review articles as substantial chapteMoreover, as promised, prominence has been given to compile extremely important aspects of Stress Physiology. The detailed choice of the contents of the various contributions has been left largely to the individual authoDoubtless, this book will be of immense help to scientists, teachers and students of almost all disciplines of Agriculture, Botany and Biotechnology.
The book is exceptional in its organization with three major characteristics of plant system i.e. Plant Physiology, Biochemistry and Molecular Biology been provided under one canopy. Physiology, which deals with all the vital activities of a plant and also explains how it reacts to sustain in natural distress similarly within the plant, the types of physiological actions at biochemical level forming innumerable compounds through chains of biochemical reactions at various levels of plant growth and development becomes Biochemistry. However, the curiosity and thirst of knowledge of human being is endless. Man has been providing still inside up to the molecular and genetic levels to understand the nature of biochemical reactions and to control if possible up to the desired level and that is Molecular Biology. Now this is the time to elevate most relevant work of academic and applied importance out of vast research of diverse significance done in the last fifty years.
With over 1000 original drawings and 500 photographs, this work offers complete coverage of cell biology, plant physiology and molecular biology.
1 A Leaf Cell Consists of Several Metabolic Compartments 2 The Use of Energy from Sunlight by Photosynthesis is the Basis of Life on Earth 3 Photosynthesis is an Electron Transport Process 4 ATP is Generated by Photosynthesis 5 Mitochondria are the Power Station of the Cell 6 The Calvin Cycle Catalyzes Photosynthetic CO2 Assimilation 7 In the Photorespiratory Pathway Phosphoglycolate Formed by the Oxygenase Activity of RubisCo is Recycled 8 Photosynthesis Implies the Consumption of Water 9 Polysaccharides are Storage and Transport Forms of Carbohydrates Produced by Photosynthesis 10Nitrate Assimilation is Essential for the Synthesis of Organic Matter 11 Nitrogen Fixation Enables the Nitrogen in the Air to be Used for Plant Growth 12 Sulfate Assimilation Enables the Synthesis of Sulfur Containing Substances 13 Phloem Transport Distributes Photoassimilates to the Various Sites of Consumption and Storage 14 Products of Nitrate Assimilation are Deposited in Plants as Storage Proteins 15 Glycerolipids are Membrane Constituents and Function as Carbon Stores 16 Secondary Metabolites Fulfill Specific Ecological Functions in Plants 17 Large Diversity of Isoprenoids has Multiple Funtions in Plant Metabolism 18 Phenylpropanoids Comprise a Multitude of Plant Secondary Metabolites and Cell Wall Components 19 Multiple Signals Regulate the Growth and Development of Plant Organs and Enable Their Adaptation to Environmental Conditions 20 A Plant Cell has Three Different Genomes 21 Protein Biosynthesis Occurs at Different Sites of a Cell 22 Gene Technology Makes it Possible to Alter Plants to Meet Requirements of Agriculture, Nutrition, and Industry.
Plant hormones play a crucial role in controlling the way in which plants growand develop. Whilemetabolism providesthepowerand buildingblocks for plant life, it is the hormones that regulate the speed of growth of the individual parts and integrate these parts to produce the form that we recognize as a plant. In addition, theyplayacontrolling role inthe processes of reproduction. This book is a description ofthese natural chemicals: how they are synthesizedand metabolized; howthey work; whatwe knowoftheir molecular biology; how we measure them; and a description ofsome ofthe roles they play in regulating plant growth and development. Emphasis has also been placed on the new findings on plant hormones deriving from the expanding use ofmolecular biology as a tool to understand these fascinating regulatory molecules. Even at the present time, when the role of genes in regulating all aspects of growth and development is considered of prime importance, it is still clear that the path of development is nonetheless very much under hormonal control, either via changes in hormone levels in response to changes in gene transcription, or with the hormones themselves as regulators ofgene transcription. This is not a conference proceedings, but a selected collection ofnewly written, integrated, illustrated reviews describing our knowledge of plant hormones, and the experimental work that is the foundation of this knowledge.
Biologists worldwide now speak the scientific language of molecular biology and use the same molecular tools. Interest is growing in the molecular biology of abiotic stress tolerance and modes of installing better tolerant mechanisms in crop plants. Current studies make plants capable of sustaining their yields even under stressful conditions. Further, this information may form the basis for its application in biotechnology and bioinformatics.
The plant cell wall plays a vital role in almost every aspect of plant physiology. New techniques in spectroscopy, biophysics and molecular biology have revealed the extraordinary complexity of its molecular architecture and just how important this structure is in the control of plant growth and development. The Second Edition of this accessible and integrated textbook has been revised and updated throughout. As well as focusing on the structure and function of plant cell walls the book also looks at the applications of this research. It discusses how plant cell walls can be exploited by the biotechnology industry and some of the main challenges for future research. Key topics include: architecture and skeletal functions of the wall; cell-wall formation; control of cell growth; role in intracellular transport; interactions with other organisms; cell-wall degradation; biotechnological applications of cell-walls; role in diet and health. This textbook provides a clear, well illustrated introduction to the physiology and biochemistry of plant cell walls which will be invaluable to upper level undergraduate and post graduate students of plant physiology, plant pathology, plant biotechnology and biochemistry.
A stunning landmark co-publication between the American Society of Plant Biologists and Wiley-Blackwell. The Molecular Life of Plants presents students with an innovative, integrated approach to plant science. It looks at the processes and mechanisms that underlie each stage of plant life and describes the intricate network of cellular, molecular, biochemical and physiological events through which plants make life on land possible. Richly illustrated, this book follows the life of the plant, starting with the seed, progressing through germination to the seedling and mature plant, and ending with reproduction and senescence. This "seed-to-seed" approach will provide students with a logical framework for acquiring the knowledge needed to fully understand plant growth and development. Written by a highly respected and experienced author team The Molecular Life of Plants will prove invaluable to students needing a comprehensive, integrated introduction to the subject across a variety of disciplines including plant science, biological science, horticulture and agriculture.
In recent years, molecular biology has infiltrated into all branches of botany. This is particularly true of plant physiology. This book attempts to provide an introduction to the metabolic and developmental physiology of higher plants from a molecular biological point of view. Starting from the heterocatalytic function of DNA the first ten chapters deal with metabolism; development is presented in the last nine, starting from the autocatalytic functions of DNA and including certain topics oriented more toward metabolic physiology. Both fields of plant physiology are so closely linked that an in tegrated presen tation of this kind seemed not only possible but desirable. In contrast to other accounts, an attempt has been made to give equal weight to metabolism and development. In particular, the so-called "sec ondary" plant materials, which are of considerable interest to the phar macist, the nutrition technologist, the plant breeder, and the agriculturalist, as well as to the biologist, are treated sufficiently. It is ob vious that the wealth of material made an illustrative style of presentation necessary. The book is intended for beginners, and so it has had, in part, to be simplified. Even so it has not been possible to write it without mentioning hypotheses that anticipate much more research. The beginner ought also to learn how working hypotheses are first postulated on the basis of cer tain facts and then must either be proved or refuted.
The beginnings of human civili zation can be traced back to the time , ne- ly 12 ,000 years ago , when th e early humans gradually ch anged from a life of hunting and gathering food , to producing food. This beginning of pri- tive agriculture ensured a dependable supply of food , and fostered the living together of people in groups and the development of s o c i e ty. During th is time, plant s e e ds were recognized a s a valuable s o ur c e of food and nutrition , and began to be used for growing plants for food. Ever s i n c e , plant seeds have played an important role in the development of the human civilization . Even today, s e e ds of a few crop s p e c i e s , s uc h as the cereals and legume s, are the primary s o u r c e of most human food , and the predominant commodity in international agriculture. Owing to their great importance as food for human s and in international trade , seeds have been a favorite object of s t u d y by developmental biologists and physiologi sts , nutritionist s and chem i sts . A wealth of useful information i s available on th e biology of seed s .