Download Free Developments In Nonstandard Mathematics Book in PDF and EPUB Free Download. You can read online Developments In Nonstandard Mathematics and write the review.

This book contains expository papers and articles reporting on recent research by leading world experts in nonstandard mathematics, arising from the International Colloquium on Nonstandard Mathematics held at the University of Aveiro, Portugal in July 1994. Nonstandard mathematics originated with Abraham Robinson, and the body of ideas that have developed from this theory of nonstandard analysis now vastly extends Robinson's work with infinitesimals. The range of applications includes measure and probability theory, stochastic analysis, differential equations, generalised functions, mathematical physics and differential geometry, moreover, the theory has implicaitons for the teaching of calculus and analysis. This volume contains papers touching on all of the abovbe topics, as well as a biographical note about Abraham Robinson based on the opening address given by W.A>J> Luxemburg - who knew Robinson - to the Aveiro conference which marked the 20th anniversary of Robinson's death. This book will be of particular interest to students and researchers in nonstandard analysis, measure theory, generalised functions and mathematical physics.
Considered by many to be Abraham Robinson's magnum opus, this book offers an explanation of the development and applications of non-standard analysis by the mathematician who founded the subject. Non-standard analysis grew out of Robinson's attempt to resolve the contradictions posed by infinitesimals within calculus. He introduced this new subject in a seminar at Princeton in 1960, and it remains as controversial today as it was then. This paperback reprint of the 1974 revised edition is indispensable reading for anyone interested in non-standard analysis. It treats in rich detail many areas of application, including topology, functions of a real variable, functions of a complex variable, and normed linear spaces, together with problems of boundary layer flow of viscous fluids and rederivations of Saint-Venant's hypothesis concerning the distribution of stresses in an elastic body.
Two-part treatment begins with a self-contained introduction to the subject, followed by applications to stochastic analysis and mathematical physics. "A welcome addition." — Bulletin of the American Mathematical Society. 1986 edition.
An introduction to nonstandard analysis based on a course given by the author. It is suitable for beginning graduates or upper undergraduates, or for self-study by anyone familiar with elementary real analysis. It presents nonstandard analysis not just as a theory about infinitely small and large numbers, but as a radically different way of viewing many standard mathematical concepts and constructions. It is a source of new ideas, objects and proofs, and a wealth of powerful new principles of reasoning. The book begins with the ultrapower construction of hyperreal number systems, and proceeds to develop one-variable calculus, analysis and topology from the nonstandard perspective. It then sets out the theory of enlargements of fragments of the mathematical universe, providing a foundation for the full-scale development of the nonstandard methodology. The final chapters apply this to a number of topics, including Loeb measure theory and its relation to Lebesgue measure on the real line. Highlights include an early introduction of the ideas of internal, external and hyperfinite sets, and a more axiomatic set-theoretic approach to enlargements than is usual.
In the aftermath of the discoveries in foundations of mathematiC's there was surprisingly little effect on mathematics as a whole. If one looks at stan dard textbooks in different mathematical disciplines, especially those closer to what is referred to as applied mathematics, there is little trace of those developments outside of mathematical logic and model theory. But it seems fair to say that there is a widespread conviction that the principles embodied in the Zermelo - Fraenkel theory with Choice (ZFC) are a correct description of the set theoretic underpinnings of mathematics. In most textbooks of the kind referred to above, there is, of course, no discussion of these matters, and set theory is assumed informally, although more advanced principles like Choice or sometimes Replacement are often mentioned explicitly. This implicitly fixes a point of view of the mathemat ical universe which is at odds with the results in foundations. For example most mathematicians still take it for granted that the real number system is uniquely determined up to isomorphism, which is a correct point of view as long as one does not accept to look at "unnatural" interpretations of the membership relation.
The goal of this monograph is to give an accessible introduction to nonstandard methods and their applications, with an emphasis on combinatorics and Ramsey theory. It includes both new nonstandard proofs of classical results and recent developments initially obtained in the nonstandard setting. This makes it the first combinatorics-focused account of nonstandard methods to be aimed at a general (graduate-level) mathematical audience. This book will provide a natural starting point for researchers interested in approaching the rapidly growing literature on combinatorial results obtained via nonstandard methods. The primary audience consists of graduate students and specialists in logic and combinatorics who wish to pursue research at the interface between these areas.
This is the proceedings of the AMS special session on nonstandard models of arithmetic and set theory held at the Joint Mathematics Meetings in Baltimore (MD). The volume opens with an essay from Haim Gaifman that probes the concept of non-standardness in mathematics and provides a fascinating mix of historical and philosophical insights into the nature of nonstandard mathematical structures. In particular, Gaifman compares and contrasts the discovery of nonstandard models with other key mathematical innovations, such as the introduction of various number systems, the modern concept of function, and non-Euclidean geometries. Other articles in the book present results related to nonstandard models in arithmetic and set theory, including a survey of known results on the Turing upper bounds of arithmetic sets and functions. The volume is suitable for graduate students and research mathematicians interested in logic, especially model theory.
A unified account of the major new developments inspired by Maurey's application of Banach space ultraproducts to the fixed point theory for non-expansive mappings is given in this text. The first third of the book is devoted to laying a careful foundation for the actual fixed point theoretic results which follow. Set theoretic and Banach space ultraproducts constructions are studied in detail in the second part of the book, while the remainder of the book gives an introduction to the classical fixed point theory in addition to a discussion of normal structure. This is the first book which studies classical fixed point theory for non-expansive maps in the view of non-standard methods.
An introduction to the philosophy of mathematics grounded in mathematics and motivated by mathematical inquiry and practice. In this book, Joel David Hamkins offers an introduction to the philosophy of mathematics that is grounded in mathematics and motivated by mathematical inquiry and practice. He treats philosophical issues as they arise organically in mathematics, discussing such topics as platonism, realism, logicism, structuralism, formalism, infinity, and intuitionism in mathematical contexts. He organizes the book by mathematical themes--numbers, rigor, geometry, proof, computability, incompleteness, and set theory--that give rise again and again to philosophical considerations.
'This text shows that the study of the almost-forgotten, non-Archimedean mathematics deserves to be utilized more intently in a variety of fields within the larger domain of applied mathematics.'CHOICEThis book contains an original introduction to the use of infinitesimal and infinite numbers, namely, the Alpha-Theory, which can be considered as an alternative approach to nonstandard analysis.The basic principles are presented in an elementary way by using the ordinary language of mathematics; this is to be contrasted with other presentations of nonstandard analysis where technical notions from logic are required since the beginning. Some applications are included and aimed at showing the power of the theory.The book also provides a comprehensive exposition of the Theory of Numerosity, a new way of counting (countable) infinite sets that maintains the ancient Euclid's Principle: 'The whole is larger than its parts'. The book is organized into five parts: Alpha-Calculus, Alpha-Theory, Applications, Foundations, and Numerosity Theory.