Download Free Development Of Sustainable Chemical Technologies Using Low Cost Ionic Liquids For Waste Decontamination And Valorization Book in PDF and EPUB Free Download. You can read online Development Of Sustainable Chemical Technologies Using Low Cost Ionic Liquids For Waste Decontamination And Valorization and write the review.

Valorization of Agri-Food Wastes and By-Products: Recent Trends, Innovations and Sustainability Challenges addresses the waste and by-product valorization of fruits and vegetables, beverages, nuts and seeds, dairy and seafood. The book focuses its coverage on bioactive recovery, health benefits, biofuel production and environment issues, as well as recent technological developments surrounding state of the art of food waste management and innovation. The book also presents tools for value chain analysis and explores future sustainability challenges. In addition, the book offers theoretical and experimental information used to investigate different aspects of the valorization of agri-food wastes and by-products. Valorization of Agri-Food Wastes and By-Products: Recent Trends, Innovations and Sustainability Challenges will be a great resource for food researchers, including those working in food loss or waste, agricultural processing, and engineering, food scientists, technologists, agricultural engineers, and students and professionals working on sustainable food production and effective management of food loss, wastes and by-products. - Covers recent trends, innovations, and sustainability challenges related to food wastes and by-products valorization - Explores various recovery processes, the functionality of targeted bioactive compounds, and green processing technologies - Presents emerging technologies for the valorization of agri-food wastes and by-products - Highlights potential industrial applications of food wastes and by-products to support circular economy concepts
Circularity of Plastics: Sustainability, Emerging Materials, and Valorization of Waste Plastic takes an innovative, interdisciplinary approach to circularity and sustainability in plastics, with an emphasis on plastic waste and end-of-life treatment and options for recycling, re-use, valorization and development of biomass-based polymers. The book introduces key concepts of sustainable materials, the circular economy, and lifecycle assessment, and discusses challenges in the valorization of waste. Other sections cover the upcycling of waste plastic into new materials and fuels, with dedicated chapters exploring state-of-the-art techniques for conversion to new sustainable polymers, fuel, fine chemicals and carbon nanomaterials. Emerging technologies used to produce functional polymers from renewable feedstocks, including CO2, biomass, natural polymers, polylactic acid (PLA), and polyhydroxyalkanoate-based materials (PHAs) are then explored, with a final chapter focusing on applications of sustainable materials, challenges, and future perspectives. This is a valuable resource for researchers, scientists, engineers, R&D professionals, and advanced students from a range of disciplines and backgrounds, with an interest in sustainable materials, circularity in plastics, and polymer waste and valorization. - Explains the fundamental concepts of sustainable materials, circular economy, lifecycle assessment, and valorization of plastic waste - Presents cutting-edge methods for the conversion or upcycling of waste to sustainable polymers, fuel and fine chemicals, and carbon nanomaterials - Provides detailed coverage of the development of functional polymers from a range of sustainable and renewable resources
The field of Green and Sustainable Chemistry has demonstrated its ability to address some of greatest challenges as outlined by the United Nations Sustainability Development Goals (SDGs). The many aspects of Green and Sustainable Chemistry have been presented in the format of the Periodic Table of the Elements in order to illustrate the importance of each of the types of contributions. The book presents the Humanitarian Elements that underlie the reasons that drive the field of Green and Sustainable Chemistry, the scientific and technological elements of green chemistry and engineering the manifest the discovery and invention of new sustainable technologies, the Enabling Systems Conditions that allow sustainable solutions to go to scale, and the Noble Elements that are the vision for the sustainable world we strive for.
In recent years the need for sustainable process design and alternative reaction routes to reduce industry?s impact on the environment has gained vital importance. The book begins with a general overview of new trends in designing industrial chemical processes which are environmentally friendly and economically feasible. Specific examples written by experts from industry cover the possibilities of running industrial chemical processes in a sustainable manner and provide an up-to-date insight into the main concerns, e.g., the use of renewable raw materials, the use of alternative energy sources in chemical processes, the design of intrinsically safe processes, microreactor and integrated reaction/ separation technologies, process intensification, waste reduction, new catalytic routes and/or solvent and process optimization.
SUSTAINABLE SOLUTIONS FOR ENVIRONMENTAL POLLUTION This first volume in a broad, comprehensive two-volume set, Sustainable Solutions for Environmental Pollution, concentrates on the role of waste management in solving pollution problems and the value-added products that can be created out of waste, turning a negative into an environmental and economic positive. Environmental pollution is one of the biggest problems facing our world today, in every country, region, and even down to local landfills. Not just solving these problems, but turning waste into products, even products that can make money, is a huge game-changer in the world of environmental engineering. Finding ways to make fuel and other products from solid waste, setting a course for the production of future biorefineries, and creating a clean process for generating fuel and other products are just a few of the topics covered in the groundbreaking new first volume in the two-volume set, Sustainable Solutions for Environmental Pollution. The valorization of waste, including the creation of biofuels, turning waste cooking oil into green chemicals, providing sustainable solutions for landfills, and many other topics are also covered in this extensive treatment on the state of the art of this area in environmental engineering. This groundbreaking new volume in this forward-thinking set is the most comprehensive coverage of all of these issues, laying out the latest advances and addressing the most serious current concerns in environmental pollution. Whether for the veteran engineer or the student, this is a must-have for any library. AUDIENCE Petroleum, chemical, process, and environmental engineers, other scientists and engineers working in the area of environmental pollution, and students at the university and graduate level studying these areas
Structures, Bonding and Hydrogen Bonds, by Kun Dong, Qian Wang, Xingmei Lu, Suojiang Zhang Aggregation in System of Ionic Liquids, by Jianji Wang, Huiyong Wang Dissolution of Biomass Using Ionic Liquids, by Hui Wang, Gabriela Gurau, Robin D. Rogers Effect of the Structures of Ionic Liquids on Their Physical-Chemical Properties, by Yu-Feng Hu, Xiao-Ming Peng Microstructure study of Ionic liquids by spectroscopy, by Haoran Li Structures and Thermodynamic Properties of Ionic Liquids, by Tiancheng Mu, Buxing Han
A multidisciplinary overview of bio-derived solvent applications, life cycle analysis, and strategies required for industrial commercialization This book provides the first and only comprehensive review of the state-of-the-science in bio-derived solvents. Drawing on their own pioneering work in the field, as well as an exhaustive survey of the world literature on the subject, the authors cover all the bases—from bio-derived solvent applications to life cycle analysis to strategies for industrial commercialization—for researchers and professional chemists working across a range of industries. In the increasingly critical area of sustainable chemistry, the search for new and better green solvents has become a top priority. Thanks to their renewability, biodegradability and low toxicity, as well as their potential to promote advantageous organic reactions, green solvents offer the promise of significantly reducing the pernicious effects of chemical processes on human health and the environment. Following an overview of the current solvents markets and the challenges and opportunities presented by bio-derived solvents, a series of dedicated chapters cover all significant classes of solvent arranged by origin and/or chemical structure. Throughout, real-world examples are used to help demonstrate the various advantages, drawbacks, and limitations of each class of solvent. Topics covered include: The commercial potential of various renewably sourced solvents, such as glycerol The various advantages and disadvantages of bio-derived versus petroleum-based solvents Renewably-sourced and waste-derived solvents in the design of eco-efficient processes Life cycle assessment and predictive methods for bio-based solvents Industrial and commercial viability of bio-based solvents now and in the years ahead Potential and limitations of methodologies involving bio-derived solvents New developments and emerging trends in the field and the shape of things to come Considering the vast potential for new and better products suggested by recent developments in this exciting field, Bio-Based Solvents will be a welcome resource among students and researchers in catalysis, organic synthesis, electrochemistry, and pharmaceuticals, as well as industrial chemists involved in manufacturing processes and formulation, and policy makers.
Extraction processes are essential steps in numerous industrial applications from perfume over pharmaceutical to fine chemical industry. Nowadays, there are three key aspects in industrial extraction processes: economy and quality, as well as environmental considerations. This book presents a complete picture of current knowledge on green extraction in terms of innovative processes, original methods, alternative solvents and safe products, and provides the necessary theoretical background as well as industrial application examples and environmental impacts. Each chapter is written by experts in the field and the strong focus on green chemistry throughout the book makes this book a unique reference source. This book is intended to be a first step towards a future cooperation in a new extraction of natural products, built to improve both fundamental and green parameters of the techniques and to increase the amount of extracts obtained from renewable resources with a minimum consumption of energy and solvents, and the maximum safety for operators and the environment.