Download Free Development Of Remote Water Quality Monitoring System Using Disruption Tolerant Networking Dtn Book in PDF and EPUB Free Download. You can read online Development Of Remote Water Quality Monitoring System Using Disruption Tolerant Networking Dtn and write the review.

Delay and disruption networking (DTN) is an up-and-coming technology that enables networking in extreme environments. This complete reference on DTN covers applications requirements, DTN protocols, and network implementation. Thoroughly examining the causes of delay and disruption, the book shows how to engineer a robust network that can survive the harshest conditions.
This volume includes 74 papers presented at ICTIS 2017: Second International Conference on Information and Communication Technology for Intelligent Systems. The conference was held on 25th and 26th March 2017, in Ahmedabad, India and organized jointly by the Associated Chambers of Commerce and Industry of India (ASSOCHAM) Gujarat Chapter, the G R Foundation, the Association of Computer Machinery, Ahmedabad Chapter and supported by the Computer Society of India Division IV – Communication and Division V – Education and Research. The papers featured mainly focus on information and communications technology (ICT) for computation, algorithms and data analytics. The fundamentals of various data analytics and algorithms discussed are useful to researchers in the field.
Wireless sensors and sensor networks (WSNs) are nowadays becoming increasingly important due to their decisive advantages. Different trends towards the Internet of Things (IoT), Industry 4.0 and 5G Networks address massive sensing and admit to have wireless sensors delivering measurement data directly to the Web in a reliable and easy manner. These sensors can only be supported, if sufficient energy efficiency and flexible solutions are developed for energy-aware wireless sensor nodes. In the last years, different possibilities for energy harvesting have been investigated showing a high level of maturity. This book gives therefore an overview on fundamentals and techniques for energy harvesting and energy transfer from different points of view. Different techniques and methods for energy transfer, management and energy saving on network level are reported together with selected interesting applications. The book is interesting for researchers, developers and students in the field of sensors, wireless sensors, WSNs, IoT and manifold application fields using related technologies. The book is organized in four major parts. The first part of the book introduces essential fundamentals and methods, while the second part focusses on vibration converters and hybridization. The third part is dedicated to wireless energy transfer, including both RF and inductive energy transfer. Finally, the fourth part of the book treats energy saving and management strategies. The main contents are: Essential fundamentals and methods of wireless sensors Energy harvesting from vibration Hybrid vibration energy converters Electromagnetic transducers Piezoelectric transducers Magneto-electric transducers Non-linear broadband converters Energy transfer via magnetic fields RF energy transfer Energy saving techniques Energy management strategies Energy management on network level Applications in agriculture Applications in structural health monitoring Application in power grids Prof. Dr. Olfa Kanoun is professor for measurement and sensor technology at Chemnitz university of technology. She is specialist in the field of sensors and sensor systems design.
A detailed review of underwater channel characteristics, Underwater Acoustic Sensor Networks investigates the fundamental aspects of underwater communication. Prominent researchers from around the world consider contemporary challenges in the development of underwater acoustic sensor networks (UW-ASNs) and introduce a cross-layer approach for effec
Delay- and Disruption Tolerant Networks (DTNs) are networks subject to arbitrarily long-lived disruptions in connectivity and therefore cannot guarantee end-to-end connectivity at all times. Consequently DTNs called for novel core networking protocols since most existing Internet protocols rely on the network’s ability to maintain end-to-end communication between participating nodes. This book presents the fundamental principles that underline DTNs. It explains the state-of-the-art on DTNs, their architecture, protocols, and applications. It also explores DTN’s future technological trends and applications. Its main goal is to serve as a reference for researchers and practitioners.
Advancement in sensor technology, smart instrumentation, wireless sensor networks, miniaturization, RFID and information processing is helping towards the realization of Internet of Things (IoT). IoTs are finding applications in various area applications including environmental monitoring, intelligent buildings, smart grids and so on. This book provides design challenges of IoT, theory, various protocols, implementation issues and a few case study. The book will be very useful for postgraduate students and researchers to know from basics to implementation of IoT.
This is the first book offering an in-depth and comprehensive IoT network simulation, supported by OPNET tool. Furthermore, the book presents the simulations of IoT in general, not limited by OPNET. The authors provide rich OPNET IoT simulation codes, with detailed explanation regarding the functionalities of the model. These codes can facilitate readers’ fast implementation, and the shared model can guide readers through developing their own research. This book addresses various versions of Internet of Things (IoT), including human-centric IoT, green IoT, Narrow band IoT, Smart IoT, IoT-Cloud integration. The introduced OPNET IoT simulation provides a comprehensive platform to simulate above-mentioned IoT systems. Besides, this book introduces OPNET semi-physical simulation in detail. Based on this technology, simulated IoT and practical cloud are seamlessly connected with each other. On top of this “IoT-cloud-integration” semi-physical simulation environment, various smart IoT applications can be realized.
This book is based on a series of conferences on Wireless Communications, Networking and Applications that have been held on December 27-28, 2014 in Shenzhen, China. The meetings themselves were a response to technological developments in the areas of wireless communications, networking and applications and facilitate researchers, engineers and students to share the latest research results and the advanced research methods of the field. The broad variety of disciplines involved in this research and the differences in approaching the basic problems are probably typical of a developing field of interdisciplinary research. However, some main areas of research and development in the emerging areas of wireless communication technology can now be identified. The contributions to this book are mainly selected from the papers of the conference on wireless communications, networking and applications and reflect the main areas of interest: Section 1 - Emerging Topics in Wireless and Mobile Computing and Communications; Section 2 - Internet of Things and Long Term Evolution Engineering; Section 3 - Resource Allocation and Interference Management; Section 4 - Communication Architecture, Algorithms, Modeling and Evaluation; Section 5 - Security, Privacy, and Trust; and Section 6 - Routing, Position Management and Network Topologies.
Future communication networks aim to build an intelligent and efficient living environment by connecting a variety of heterogeneous networks to fulfill complicated tasks. These communication networks bring significant challenges in building secure and reliable communication networks to address the numerous threat and privacy concerns. New research technologies are essential to preserve privacy, prevent attacks, and achieve the requisite reliability. Security, Privacy and Reliability in Computer Communications and Networks studies and presents recent advances reflecting the state-of-the-art research achievements in novel cryptographic algorithm design, intrusion detection, privacy preserving techniques and reliable routing protocols. Technical topics discussed in the book include: Vulnerabilities and Intrusion DetectionCryptographic Algorithms and EvaluationPrivacy Reliable Routing Protocols This book is ideal for personnel in computer communication and networking industries as well as academic staff and collegial, master, Ph.D. students in computer science, computer engineering, cyber security, information insurance and telecommunication systems.
"An excellent book for those who are interested in learning the current status of research and development . . . [and] who want to get a comprehensive overview of the current state-of-the-art." —E-Streams This book provides up-to-date information on research and development in the rapidly growing area of networks based on the multihop ad hoc networking paradigm. It reviews all classes of networks that have successfully adopted this paradigm, pointing out how they penetrated the mass market and sparked breakthrough research. Covering both physical issues and applications, Mobile Ad Hoc Networking: Cutting Edge Directions offers useful tools for professionals and researchers in diverse areas wishing to learn about the latest trends in sensor, actuator, and robot networking, mesh networks, delay tolerant and opportunistic networking, and vehicular networks. Chapter coverage includes: Multihop ad hoc networking Enabling technologies and standards for mobile multihop wireless networking Resource optimization in multiradio multichannel wireless mesh networks QoS in mesh networks Routing and data dissemination in opportunistic networks Task farming in crowd computing Mobility models, topology, and simulations in VANET MAC protocols for VANET Wireless sensor networks with energy harvesting nodes Robot-assisted wireless sensor networks: recent applications and future challenges Advances in underwater acoustic networking Security in wireless ad hoc networks Mobile Ad Hoc Networking will appeal to researchers, developers, and students interested in computer science, electrical engineering, and telecommunications.