Download Free Development Of Radiofrequency Power And Non Thermal Metabolic Stress In Disinfection And Disinfestation Of Foods And Agricultural Products Book in PDF and EPUB Free Download. You can read online Development Of Radiofrequency Power And Non Thermal Metabolic Stress In Disinfection And Disinfestation Of Foods And Agricultural Products and write the review.

It is our hope that this book will be of interest and use not only to scientists, but also to the food-producing industry, governments, politicians and consumers as well. If we are able to stimulate this interest, albeit in a small way, we have achieved our goal.
This publication capitalizes on the experience of scientists from the North Africa and Near East countries, in collaboration with experts from around the world, specialized in the different aspects of greenhouse crop production. It provides a comprehensive description and assessment of the greenhouse production practices in use in Mediterranean climate areas that have helped diversify vegetable production and increase productivity. The publication is also meant to be used as a reference and tool for trainers and growers as well as other actors in the greenhouse vegetables value chain in this region.
Note for the electronic edition: This draft has been assembled from information prepared by authors from around the world. It has been submitted for editing and production by the USDA Agricultural Research Service Information Staff and should be cited as an electronic draft of a forthcoming publication. Because the 1986 edition is out of print, because we have added much new and updated information, and because the time to publication for so massive a project is still many months away, we are making this draft widely available for comment from industry stakeholders, as well as university research, teaching and extension staff.
Jointly published with INRA, Paris. Pesticide resistance is becoming more frequent and widespread with more than 500 insect species known to have become resistant to synthetic insecticides. On the other hand, consumers increasingly demand agricultural products without any pesticide residues. This book, for the first time, shows the alternative: solely physical methods for plant protection by means of thermal, electromagnetic, mechanical and vacuum processes. A glossary rounds up this extremely valuable book.
Globalization of the food supply has created conditions favorable for the emergence, reemergence, and spread of food-borne pathogens-compounding the challenge of anticipating, detecting, and effectively responding to food-borne threats to health. In the United States, food-borne agents affect 1 out of 6 individuals and cause approximately 48 million illnesses, 128,000 hospitalizations, and 3,000 deaths each year. This figure likely represents just the tip of the iceberg, because it fails to account for the broad array of food-borne illnesses or for their wide-ranging repercussions for consumers, government, and the food industry-both domestically and internationally. A One Health approach to food safety may hold the promise of harnessing and integrating the expertise and resources from across the spectrum of multiple health domains including the human and veterinary medical and plant pathology communities with those of the wildlife and aquatic health and ecology communities. The IOM's Forum on Microbial Threats hosted a public workshop on December 13 and 14, 2011 that examined issues critical to the protection of the nation's food supply. The workshop explored existing knowledge and unanswered questions on the nature and extent of food-borne threats to health. Participants discussed the globalization of the U.S. food supply and the burden of illness associated with foodborne threats to health; considered the spectrum of food-borne threats as well as illustrative case studies; reviewed existing research, policies, and practices to prevent and mitigate foodborne threats; and, identified opportunities to reduce future threats to the nation's food supply through the use of a "One Health" approach to food safety. Improving Food Safety Through a One Health Approach: Workshop Summary covers the events of the workshop and explains the recommendations for future related workshops.
The second half of the 20th century and the beginning of the 21st century witnessed important changes in ecology, climate and human behaviour that favoured the development of urban pests. Most alarmingly, urban planners now face the dramatic expansion of urban sprawl, in which city suburbs are growing into the natural habitats of ticks, rodents and other pests. Also, many city managers now erroneously assume that pest-borne diseases are relics of the past. All these changes make timely a new analysis of the direct and indirect effects of present-day urban pests on health. Such an analysis should lead to the development of strategies to manage them and reduce the risk of exposure. To this end, WHO invited international experts in various fields - pests, pest-related diseases and pest management - to provide evidence on which to base policies. These experts identified the public health risk posed by various pests and appropriate measures to prevent and control them. This book presents their conclusions and formulates policy options for all levels of decision-making to manage pests and pest-related diseases in the future. [Ed.]
The problem of creating microbiologically-safe food with an acceptable shelf-life and quality for the consumer is a constant challenge for the food industry. Microbial decontamination in the food industry provides a comprehensive guide to the decontamination problems faced by the industry, and the current and emerging methods being used to solve them.Part one deals with various food commodities such as fresh produce, meats, seafood, nuts, juices and dairy products, and provides background on contamination routes and outbreaks as well as proposed processing methods for each commodity. Part two goes on to review current and emerging non-chemical and non-thermal decontamination methods such as high hydrostatic pressure, pulsed electric fields, irradiation, power ultrasound and non-thermal plasma. Thermal methods such as microwave, radio-frequency and infrared heating and food surface pasteurization are also explored in detail. Chemical decontamination methods with ozone, chlorine dioxide, electrolyzed oxidizing water, organic acids and dense phase CO2 are discussed in part three. Finally, part four focuses on current and emerging packaging technologies and post-packaging decontamination.With its distinguished editors and international team of expert contributors, Microbial decontamination in the food industry is an indispensable guide for all food industry professionals involved in the design or use of novel food decontamination techniques, as well as any academics researching or teaching this important subject. - Provides a comprehensive guide to the decontamination problems faced by the industry and outlines the current and emerging methods being used to solve them - Details backgrounds on contamination routes and outbreaks, as well as proposed processing methods for various commodities including fresh produce, meats, seafood, nuts, juices and dairy products - Sections focus on emerging non-chemical and non-thermal decontamination methods, current thermal methods, chemical decontamination methods and current and emerging packaging technologies and post-packaging decontamination
The processing of food is no longer simple or straightforward, but is now a highly inter-disciplinary science. A number of new techniques have developed to extend shelf-life, minimize risk, protect the environment, and improve functional, sensory, and nutritional properties. The ever-increasing number of food products and preservation techniques cr