Download Free Development Of Elliptic Functions According To Ramanujan Book in PDF and EPUB Free Download. You can read online Development Of Elliptic Functions According To Ramanujan and write the review.

This unique book provides an innovative and efficient approach to elliptic functions, based on the ideas of the great Indian mathematician Srinivasa Ramanujan. The original 1988 monograph of K Venkatachaliengar has been completely revised. Many details, omitted from the original version, have been included, and the book has been made comprehensive by notes at the end of each chapter. The book is for graduate students and researchers in Number Theory and Classical Analysis, as well for scholars and aficionados of Ramanujan's work. It can be read by anyone with some undergraduate knowledge of real and complex analysis.
This unique book provides an innovative and efficient approach to elliptic functions, based on the ideas of the great Indian mathematician Srinivasa Ramanujan. The original 1988 monograph of K Venkatachaliengar has been completely revised. Many details, omitted from the original version, have been included, and the book has been made comprehensive by notes at the end of each chapter. The book is for graduate students and researchers in Number Theory and Classical Analysis, as well for scholars and aficionados of Ramanujan''s work. It can be read by anyone with some undergraduate knowledge of real and complex analysis.
Theta functions were studied extensively by Ramanujan. This book provides a systematic development of Ramanujan’s results and extends them to a general theory. The author’s treatment of the subject is comprehensive, providing a detailed study of theta functions and modular forms for levels up to 12. Aimed at advanced undergraduates, graduate students, and researchers, the organization, user-friendly presentation, and rich source of examples, lends this book to serve as a useful reference, a pedagogical tool, and a stimulus for further research. Topics, especially those discussed in the second half of the book, have been the subject of much recent research; many of which are appearing in book form for the first time. Further results are summarized in the numerous exercises at the end of each chapter.
The subject of $q$-series can be said to begin with Euler and his pentagonal number theorem. In fact, $q$-series are sometimes called Eulerian series. Contributions were made by Gauss, Jacobi, and Cauchy, but the first attempt at a systematic development, especially from the point of view of studying series with the products in the summands, was made by E. Heine in 1847. In the latter part of the nineteenth and in the early part of the twentieth centuries, two Englishmathematicians, L. J. Rogers and F. H. Jackson, made fundamental contributions. In 1940, G. H. Hardy described what we now call Ramanujan's famous $ 1\psi 1$ summation theorem as ``a remarkable formula with many parameters.'' This is now one of the fundamental theorems of the subject. Despite humble beginnings,the subject of $q$-series has flourished in the past three decades, particularly with its applications to combinatorics, number theory, and physics. During the year 2000, the University of Illinois embraced The Millennial Year in Number Theory. One of the events that year was the conference $q$-Series with Applications to Combinatorics, Number Theory, and Physics. This event gathered mathematicians from the world over to lecture and discuss their research. This volume presents nineteen of thepapers presented at the conference. The excellent lectures that are included chart pathways into the future and survey the numerous applications of $q$-series to combinatorics, number theory, and physics.
This book offers a unique account on the life and works of Srinivasa Ramanujan—often hailed as the greatest “natural” mathematical genius. Sharing valuable insights into the many stages of Ramanujan’s life, this book provides glimpses into his prolific research on highly composite numbers, partitions, continued fractions, mock theta functions, arithmetic, and hypergeometric functions which led the author to discover a new summation theorem. It also includes the list of Ramanujan’s collected papers, letters and other material present at the Wren Library, Trinity College in Cambridge, UK. This book is a valuable resource for all readers interested in Ramanujan’s life, work and indelible contributions to mathematics.
These are the proceedings of the conference "Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics" held at the Department of Mathematics, University of Florida, Gainesville, from November 11 to 13, 1999. The main emphasis of the conference was Com puter Algebra (i. e. symbolic computation) and how it related to the fields of Number Theory, Special Functions, Physics and Combinatorics. A subject that is common to all of these fields is q-series. We brought together those who do symbolic computation with q-series and those who need q-series in cluding workers in Physics and Combinatorics. The goal of the conference was to inform mathematicians and physicists who use q-series of the latest developments in the field of q-series and especially how symbolic computa tion has aided these developments. Over 60 people were invited to participate in the conference. We ended up having 45 participants at the conference, including six one hour plenary speakers and 28 half hour speakers. There were talks in all the areas we were hoping for. There were three software demonstrations.
This book contains essays on Ramanujan and his work that were written especially for this volume. It also includes important survey articles in areas influenced by Ramanujan's mathematics. Most of the articles in the book are nontechnical, but even those that are more technical contain substantial sections that will engage the general reader. The book opens with the only four existing photographs of Ramanujan, presenting historical accounts of them and information about other people in the photos. This section includes an account of a cryptic family history written by his younger brother, S. Lakshmi Narasimhan. Following are articles on Ramanujan's illness by R. A. Rankin, the British physician D. A. B. Young, and Nobel laureate S. Chandrasekhar. They present a study of his symptoms, a convincing diagnosis of the cause of his death, and a thorough exposition of Ramanujan's life as a patient in English sanitariums and nursing homes. Following this are biographies of S. Janaki (Mrs. Ramanujan) and S. Narayana Iyer, Chief Accountant of the Madras Port Trust Office, who first communicated Ramanujan's work to the Journal of the Indian Mathematical Society. The last half of the book begins with a section on ``Ramanujan's Manuscripts and Notebooks''. Included is an important article by G. E. Andrews on Ramanujan's lost notebook. The final two sections feature both nontechnical articles, such as Jonathan and Peter Borwein's ``Ramanujan and pi'', and more technical articles by Freeman Dyson, Atle Selberg, Richard Askey, and G. N. Watson. This volume complements the book Ramanujan: Letters and Commentary, Volume 9, in the AMS series, History of Mathematics. For more on Ramanujan, see these AMS publications Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, Volume 136.H, and Collected Papers of Srinivasa Ramanujan, Volume 159.H, in the AMS Chelsea Publishing series.
Upon Ramanujans death in 1920, G. H. Hardy strongly urged that Ramanujans notebooks be published and edited. In 1957, the Tata Institute of Fundamental Research in Bombay finally published a photostat edition of the notebooks, but no editing was undertaken. In 1977, Berndt began the task of editing Ramanujans notebooks: proofs are provided to theorems not yet proven in previous literature, and many results are so startling as to be unique.
In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan's lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony. This fifth and final installment of the authors’ examination of Ramanujan’s lost notebook focuses on the mock theta functions first introduced in Ramanujan’s famous Last Letter. This volume proves all of the assertions about mock theta functions in the lost notebook and in the Last Letter, particularly the celebrated mock theta conjectures. Other topics feature Ramanujan’s many elegant Euler products and the remaining entries on continued fractions not discussed in the preceding volumes. Review from the second volume:"Fans of Ramanujan's mathematics are sure to be delighted by this book. While some of the content is taken directly from published papers, most chapters contain new material and some previously published proofs have been improved. Many entries are just begging for further study and will undoubtedly be inspiring research for decades to come. The next installment in this series is eagerly awaited."- MathSciNet Review from the first volume:"Andrews and Berndt are to be congratulated on the job they are doing. This is the first step...on the way to an understanding of the work of the genius Ramanujan. It should act as an inspiration to future generations of mathematicians to tackle a job that will never be complete."- Gazette of the Australian Mathematical Society
This unique book explores the world of q, known technically as basic hypergeometric series, and represents the author’s personal and life-long study—inspired by Ramanujan—of aspects of this broad topic. While the level of mathematical sophistication is graduated, the book is designed to appeal to advanced undergraduates as well as researchers in the field. The principal aims are to demonstrate the power of the methods and the beauty of the results. The book contains novel proofs of many results in the theory of partitions and the theory of representations, as well as associated identities. Though not specifically designed as a textbook, parts of it may be presented in course work; it has many suitable exercises. After an introductory chapter, the power of q-series is demonstrated with proofs of Lagrange’s four-squares theorem and Gauss’s two-squares theorem. Attention then turns to partitions and Ramanujan’s partition congruences. Several proofs of these are given throughout the book. Many chapters are devoted to related and other associated topics. One highlight is a simple proof of an identity of Jacobi with application to string theory. On the way, we come across the Rogers–Ramanujan identities and the Rogers–Ramanujan continued fraction, the famous “forty identities” of Ramanujan, and the representation results of Jacobi, Dirichlet and Lorenz, not to mention many other interesting and beautiful results. We also meet a challenge of D.H. Lehmer to give a formula for the number of partitions of a number into four squares, prove a “mysterious” partition theorem of H. Farkas and prove a conjecture of R.Wm. Gosper “which even Erdős couldn’t do.” The book concludes with a look at Ramanujan’s remarkable tau function.