Download Free Development Of Cell Culture Processes On Digital Microfluidic Platforms Book in PDF and EPUB Free Download. You can read online Development Of Cell Culture Processes On Digital Microfluidic Platforms and write the review.

The fields of microfluidics and BioMEMS are significantly impacting cell biology research and applications through the application of engineering solutions to human disease and health problems. The dimensions of microfluidic channels are well suited to the physical scale of biological cells, and the many advantages of microfluidics make it an attractive platform for new techniques in biology. This new professional reference applies the techniques of microsystems to cell culture applications. The authors provide a thoroughly practical guide to the principles of microfluidic device design and operation and their application to cell culture techniques. The resulting book is crammed with strategies and techniques that can be immediately deployed in the lab. Equally, the insights into cell culture applications will provide those involved in traditional microfluidics and BioMEMS with an understanding of the specific demands and opportunities presented by biological applications. The goal is to guide new and interested researchers and technology developers to the important areas and state-of-the-practice strategies that will enhance the efficiency and value of their technologies, devices and biomedical products.
Techniques for microfabricating intricate microfluidic structures that mimic the microenvironment of tissues and organs, combined with the development of biomaterials with carefully engineered surface properties, have enabled new paradigms in and cell culture-based models for human diseases. The dimensions of surface features and fluidic channels made accessible by these techniques are well-suited to the size scale of biological cells. Microfluidic Cell Culture Systems applies design and experimental techniques used in in microfluidics, and cell culture technologies to organ-on-chip systems. This book is intended to serve as a professional reference, providing a practical guide to design and fabrication of microfluidic systems and biomaterials for use in cell culture systems and human organ models. The book covers topics ranging from academic first principles of microfluidic design, to clinical translation strategies for cell culture protocols. The goal is to help professionals coming from an engineering background to adapt their expertise for use in cell culture and organ models applications, and likewise to help biologists to design and employ microfluidic technologies in their cell culture systems. This 2nd edition contains new material that strengthens the focus on in vitro models useful for drug discovery and development. One new chapter reviews liver organ models from an industry perspective, while others cover new technologies for scaling these models and for multi-organ systems. Other new chapters highlight the development of organ models and systems for specific applications in disease modeling and drug safety. Previous chapters have been revised to reflect the latest advances. Provides design and operation methodology for microfluidic and microfabricated materials and devices for organ-on-chip disease and safety models. This is a rapidly expanding field that will continue to grow along with advances in cell biology and microfluidics technologies. Comprehensively covers strategies and techniques ranging from academic first principles to industrial scale-up approaches. Readers will gain insight into cell-material interactions, microfluidic flow, and design principles. Offers three fundamental types of information: 1) design principles, 2) operation techniques, and 3) background information/perspectives. The book is carefully designed to strike a balance between these three areas, so it will be of use to a broad range of readers with different technical interests and educational levels.
Stem cell technology and tissue engineering offer exciting opportunities for improving medical therapies. Success in these endeavors will depend on advances in our basic understanding of tissue culture and the development of supporting technologies. Digital microfluidics (D F) is one technology that could offer important and unique advantages for automating stem cell culture and cell-based assays to support tissue culture, drug discovery and basic biomedical research. Digital microfluidics refers to a miniaturized lab-on-a-chip platform that enables the automation of a wide array of laboratory procedures by handling liquids as droplets rather than streams. It has been applied to many chemical and biochemical protocols and assays. Advantages include reduced reaction times and reduced reagent volumes, and the ability to process multiple samples in an automated way: in series or in parallel, identically or uniquely. This dissertation describes technological advances and applications of D F for tissue engineering. Vertical dimensionality was developed by stacking multiple layers and incorporating a protocol for transferring droplets between layers. This added functionality enables new applications, exemplified by the demonstration of three previously un-achievable applications: creating a calcium alginate hydrogel with a radial crosslink density; creating a hydrogel based particle sieve; and the ability to retrieve 3D embryoid bodies on-chip. Protocols for growing three-dimensional tissue structures were established by encapsulating cells within hydrogel matrices. This protocol was used to demonstrate invasion assays for modeling tumor growth. Stem cell microenvironments were investigated by developing a protocol for the long-term growth and differentiation of embryoid bodies for cardiac tissue engineering. Non-invasive impedance assays were demonstrated for observing phenotypic behavior, maturation, and responses to chronotropic and inotropic agents. Finally, preliminary experiments were carried out to explore the feasibility of integrating piezoelectric PZT-based materials into D F devices for added functionality. The voltage change generated via the pyroelectric effect was measured for exothermic chemical reactions, and strain induced in the substrate produced from contracting cardiomyocytes was monitored via piezoelectric effect. The innovations presented here will provide the D F and tissue engineering communities with design parameters and processing protocols necessary for manipulating collagen, producing 3D cell-ECM constructs, and creating a stem cell microenvironment for cardiomyogenesis.
This book provides an introduction to the biological background of heart functioning and analyzes the various materials and technologies used for the development of microfluidic systems dedicated to cell culture, with an emphasis on cardiac cells. The authors describe the characterization of microfluidic systems for cardiac cell culture and center their discussion of the use of stem cell stimulation based on four different types: electrical, biochemical, physical, and mechanical. This book is appropriate for researchers focused on on-chip technologies and heart studies, students in bioengineering and microengineering courses, and a variety of professionals, such as biotechnologists, biomedical engineers, and clinicians working in the cardiac diseases field.
This volume contains an archival record of the NATO Advanced Study Institute on Microfluidics Based Microsystems – Fundamentals and App- cations held in Çe ?me-Izmir, Turkey, August 23–September 4, 2009. ASIs are intended to be high-level teaching activity in scientific and technical areas of current concern. In this volume, the reader may find interesting chapters and various microsystems fundamentals and applications. As the world becomes increasingly concerned with terrorism, early - spot detection of terrorist’s weapons, particularly bio-weapons agents such as bacteria and viruses are extremely important. NATO Public Diplomacy division, Science for Peace and Security section support research, Advanced Study Institutes and workshops related to security. Keeping this policy of NATO in mind, we made such a proposal on Microsystems for security. We are very happy that leading experts agreed to come and lecture in this important NATO ASI. We will see many examples that will show us Microfluidics usefulness for rapid diagnostics following a bioterrorism attack. For the applications in national security and anti-terrorism, microfluidic system technology must meet the challenges. To develop microsystems for security and to provide a comprehensive state-of-the-art assessment of the existing research and applications by treating the subject in considerable depth through lectures from eminent professionals in the field, through discussions and panel sessions are very beneficial for young scientists in the field.
This book covers the state-of-the-art research on molecular biology assays and molecular techniques enabled or enhanced by microfluidic platforms. Topics covered include microfluidic methods for cellular separations and single cell studies, droplet-based approaches to study protein expression and forensics, and microfluidic in situ hybridization for RNA analysis. Key molecular biology studies using model organisms are reviewed in detail. This is an ideal book for students and researchers in the microfluidics and molecular biology fields as well as engineers working in the biotechnology industry. This book also: Reviews exhaustively the latest techniques for single-cell genetic, epigenetic, metabolomic, and proteomic analysis Illustrates microfluidic approaches for inverse metabolic engineering, as well as analysis of circulating exosomes Broadens readers’ understanding of microfluidics convection-based PCR technology, microfluidic RNA-seq, and microfluidics for robust mobile diagnostics
Droplet and Digital Microfluidics: Ideation to Implementation is a detailed introduction to the dynamics of droplet and digital microfluidics, also featuring coverage of new methods and applications. The explosion of applications of microelectromechanical systems (MEMS) in recent years has driven demand for expertise and innovation in fluid flow in the microchannels they contain. In this book, detailed descriptions of methods for biological and chemical applications of microfluidics are provided, along with supporting foundational knowledge. In addition, the principles of droplet and digital microfluidics are explained, along with their different applications and governing physics. New additions to the technological knowledgebase that enable advances in droplet and digital microfluidics include machine learning and exciting future avenues for research. Provides step-by-step fabrication, testing, and characterization instructions in each chapter to support implementation Includes explanations of applications and methods in biological and chemical settings Describes the path to automation of digital and droplet microfluidic platforms