Download Free Development Of A Remote Laboratory For Engineering Education Book in PDF and EPUB Free Download. You can read online Development Of A Remote Laboratory For Engineering Education and write the review.

The field of information technology continues to advance at a brisk pace, including the use of Remote Laboratory (RL) systems in education and research. To address the needs of remote laboratory development for such purposes, the authors present a new state-of-the-art unified framework for RL system development. Included are solutions to commonly encountered RL implementation issues such as third-party plugin, traversing firewalls, cross platform running, and scalability, etc. Additionally, the book introduces a new application architecture of remote lab for mobile-optimized RL application development for Mobile Learning (M-Learning). It also shows how to design and organize the remote experiments at different universities and make available a framework source code. The book is intended to serve as a complete guide for remote lab system design and implementation for an audience comprised of researchers, practitioners and students to enable them to rapidly and flexibly implement RL systems for a range of fields.
This book presents a collection of results from the interdisciplinary research project “ELLI” published by researchers at RWTH Aachen University, the TU Dortmund and Ruhr-Universität Bochum between 2011 and 2016. All contributions showcase essential research results, concepts and innovative teaching methods to improve engineering education. Further, they focus on a variety of areas, including virtual and remote teaching and learning environments, student mobility, support throughout the student lifecycle, and the cultivation of interdisciplinary skills.
The field of information technology continues to advance at a brisk pace, including the use of Remote Laboratory (RL) systems in education and research. To address the needs of remote laboratory development for such purposes, the authors present a new state-of-the-art unified framework for RL system development. Included are solutions to commonly encountered RL implementation issues such as third-party plugin, traversing firewalls, cross platform running, and scalability, etc. Additionally, the book introduces a new application architecture of remote lab for mobile-optimized RL application development for Mobile Learning (M-Learning). It also shows how to design and organize the remote experiments at different universities and make available a framework source code. The book is intended to serve as a complete guide for remote lab system design and implementation for an audience comprised of researchers, practitioners and students to enable them to rapidly and flexibly implement RL systems for a range of fields.
As the most influential activity for social and economic development of individuals and societies, education is a powerful means of shaping the future. The emergence of physical and digital technologies requires an overhaul that would affect not only the way engineering is approached but also the way education is delivered and designed. Therefore, designing and developing curricula focusing on the competencies and abilities of new generation engineers will be a necessity for sustainable success. Engineering Education Trends in the Digital Era is a critical scholarly resource that examines more digitized ways of designing and delivering learning and teaching processes and discusses and acts upon developing innovative engineering education within global, societal, economic, and environmental contexts. Highlighting a wide range of topics such as academic integrity, gamification, and professional development, this book is essential for teachers, researchers, educational policymakers, curriculum designers, educational software developers, administrators, and academicians.
"This book presents current developments in the multidisciplinary creation of Internet accessible remote laboratories, offering perspectives on teaching with online laboratories, pedagogical design, system architectures for remote laboratories, future trends, and policy issues in the use of remote laboratories"--Provided by publisher.
In a remote laboratory, the user performs a real experiment without being in front of the equipment, performing remote experiments mediated by the Internet. Remote Laboratories: Empowering STEM Education with Technology is the first book to cover this radical redistribution of experimentation capacity as a whole.This book also covers using remote experiments in the classroom, the advantages of remote experimentation, the challenges faced, and opportunities for innovation when using a remote lab.The book characterizes and explains remote experiments and connects them with the curricula of subjects and prospects for teaching/learning scenarios. It further provides evidence for the positive effect of remote experimentation in the student learning process. This coverage is supplemented by an exhaustive list of remote experiments conducted around the world.
This volume investigates a number of issues needed to develop a modular, effective, versatile, cost effective, pedagogically-embedded, user-friendly, and sustainable online laboratory system that can deliver its true potential in the national and global arenas. This allows individual researchers to develop their own modular systems with a level of creativity and innovation while at the same time ensuring continuing growth by separating the responsibility for creating online laboratories from the responsibility for overseeing the students who use them. The volume first introduces the reader to several system architectures that have proven successful in many online laboratory settings. The following chapters then describe real-life experiences in the area of online laboratories from both technological and educational points of view. The volume further collects experiences and evidence on the effective use of online labs in the context of a diversity of pedagogical issues. It also illustrates successful online laboratories to highlight best practices as case studies and describes the technological design strategies, implementation details, and classroom activities as well as learning from these developments. Finally the volume describes the creation and deployment of commercial products, tools and services for online laboratory development. It also provides an idea about the developments that are on the horizon to support this area.
This book constitutes the proceedings of the 16th International Conference on Remote Engineering and Virtual Instrumentation (REV), held at the BMS College of Engineering, Bangalore, India on 3–6 February 2019. Today, online technologies are at the core of most fields of engineering, as well as of society as a whole, and are inseparably connected with Internet of Things, cyber-physical systems, collaborative networks and grids, cyber cloud technologies, service architectures, to name but a few. Since it was first held in, 2004, the REV conference has focused on the increasing use of the Internet for engineering tasks and the problems surrounding it. The 2019 conference demonstrated and discussed the fundamentals, applications and experiences in the field of online engineering and virtual instrumentation. It also presented guidelines for university-level courses on these topics, in view of the increasing globalization of education and the demand for teleworking, remote services and collaborative working environments.
Innovative Techniques in Instruction Technology, E-Learning, E-Assessment and Education is a collection of world-class paper articles addressing the following topics: (1) E-Learning including development of courses and systems for technical and liberal studies programs; online laboratories; intelligent testing using fuzzy logic; evaluation of on line courses in comparison to traditional courses; mediation in virtual environments; and methods for speaker verification. (2) Instruction Technology including internet textbooks; pedagogy-oriented markup languages; graphic design possibilities; open source classroom management software; automatic email response systems; tablet-pcs; personalization using web mining technology; intelligent digital chalkboards; virtual room concepts for cooperative scientific work; and network technologies, management, and architecture. (3) Science and Engineering Research Assessment Methods including assessment of K-12 and university level programs; adaptive assessments; auto assessments; assessment of virtual environments and e-learning. (4) Engineering and Technical Education including cap stone and case study course design; virtual laboratories; bioinformatics; robotics; metallurgy; building information modeling; statistical mechanics; thermodynamics; information technology; occupational stress and stress prevention; web enhanced courses; and promoting engineering careers. (5) Pedagogy including benchmarking; group-learning; active learning; teaching of multiple subjects together; ontology; and knowledge representation. (6) Issues in K-12 Education including 3D virtual learning environment for children; e-learning tools for children; game playing and systems thinking; and tools to learn how to write foreign languages.
Today, online technologies are at the core of most fields of engineering and society as a whole . This book discusses the fundamentals, applications and lessons learned in the field of online and remote engineering, virtual instrumentation, and other related technologies like Cross Reality, Data Science & Big Data, Internet of Things & Industrial Internet of Things, Industry 4.0, Cyber Security, and M2M & Smart Objects. Since the first Remote Engineering and Virtual Instrumentation (REV) conference in 2004, the event has focused on the use of the Internet for engineering tasks, as well as the related opportunities and challenges. In a globally connected world, interest in online collaboration, teleworking, remote services, and other digital working environments is rapidly increasing. In this context, the REV conferences discuss fundamentals, applications and experiences in the field of Online and Remote Engineering as well as Virtual Instrumentation. Furthermore, the conferences focus on guidelines and new concepts for engineering education in higher and vocational education institutions, including emerging technologies in learning, MOOCs & MOOLs, and open resources. This book presents the proceedings of REV2020 on “Cross Reality and Data Science in Engineering” which was held as the 17th in series of annual events. It was organized in cooperation with the Engineering Education Transformations Institute and the Georgia Informatics Institutes for Research and Education and was held at the College of Engineering at the University of Georgia in Athens (GA), USA, from February 26 to 28, 2020.